Skip to main content
Log in

Electrocatalytic Reduction of Nitrate and Nitrite at CuRh Nanoparticles/C Composite Electrodes

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Composites consisting of rhodium, copper, and copper-rhodium nanoparticles (2 nm in average diameter) dispersed in a high-surface area graphite powder (~ 10 wt.% of metal) have been synthesized by a wet chemical method. After characterization by ICP-OES and TEM, they have been tested for the electrochemical reduction of nitrates in alkaline media (10−1 mol L−1 KOH) using a cavity microelectrode. It is found that in the 0.02–0.5 V/RHE potential range, bimetallic composites exhibit a much higher electrocatalytic activity than single-metal composites. The peak current describes a volcano plot as a function of the composition, with a maximum for CuRh, which is 7.5 times higher than that obtained with pure rhodium (under identical metal wt.%). This synergistic effect can be rationalized directly from the electrochemical response of pure metals. It is then tentatively attributed to the fact that the first (rate determining) reduction step, corresponding to the formation of nitrites, takes place efficiently in copper-rich areas while the subsequent steps of nitrite reduction in ammonia (via hydroxylamine formation) occur in rhodium-rich areas. For the same mass of rhodium, the electrocatalytic conversion of nitrates to ammonia is 12 times more effective with CuRh than with pure rhodium. With the additional gain in active surface area due to the nanoparticle morphology compared to bulk or thin film forms, these results represent a step-forward in cost reduction of rhodium-based electrocatalysts for the conversion of nitrates to ammonia.

Composites of copper-rhodium nanoparticles in graphite powder were tested for the electrochemical reduction of nitrates in alkaline media. They exhibit a much higher electrocatalytic activity for the conversion of nitrates to ammonia than composites with pure rhodium nanoparticles, up to 12 times more at a composition close to CuRh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Duca, M.T.M. Koper, Energy Environ. Sci. 5, 9726 (2012)

    Article  CAS  Google Scholar 

  2. O. Ghodbane, M. Sarrazin, L. Roué, D. Bélanger, J. Electrochem. Soc. 155, F117 (2008)

    Article  CAS  Google Scholar 

  3. A.C.A. de Vooys, R.A. van Santen, J.A.R. van Veen, J. Mol. Catal. Chem. 154, 203 (2000)

    Article  Google Scholar 

  4. D. Reyter, D. Bélanger, L. Roué, J. Phys. Chem. C 113, 290 (2009)

    Article  CAS  Google Scholar 

  5. C. Milhano, D. Pletcher, J. Electroanal. Chem. 614, 24 (2008)

    Article  CAS  Google Scholar 

  6. T. Chen, H. Li, H. Ma, M.T.M. Koper, Langmuir 31, 3277 (2015)

    Article  CAS  Google Scholar 

  7. P. Rodriguez, F.D. Tichelaar, M.T.M. Koper, A.I. Yanson, J. Am. Chem. Soc. 133, 17626 (2011)

    Article  CAS  Google Scholar 

  8. N. Comisso, S. Cattarin, S. Fiameni, R. Gerbasi, L. Mattarozzi, M. Musiani, L. Vázquez-Gómez, E. Verlato, Electrochem. Commun. 25, 91 (2012)

    Article  CAS  Google Scholar 

  9. W. Siriwatcharapiboon, Y. Kwon, J. Yang, R.L. Chantry, Z. Li, S.L. Horswell, M.T.M. Koper, ChemElectroChem 1, 172 (2014)

    Article  Google Scholar 

  10. G.E. Dima, A.C.A. de Vooys, M.T.M. Koper, J. Electroanal. Chem. 554, 15 (2003)

    Article  Google Scholar 

  11. N. Comisso, S. Cattarin, P. Guerriero, L. Mattarozzi, M. Musiani, L. Vázquez-Gómez, E. Verlato, J. Solid State Electrochem. 20, 1139 (2016)

    Article  CAS  Google Scholar 

  12. S.N. Pronkin, P.A. Simonov, V.I. Zaikovskii, E.R. Savinova, J. Mol. Catal. Chem. 265, 141 (2007)

    Article  CAS  Google Scholar 

  13. D. Reyter, D. Bélanger, L. Roué, Electrochim. Acta 53, 5977 (2008)

    Article  CAS  Google Scholar 

  14. O. Brylev, M. Sarrazin, L. Roué, D. Bélanger, Electrochim. Acta 52, 6237 (2007)

    Article  CAS  Google Scholar 

  15. O. Brylev, M. Sarrazin, D. Bélanger, L. Roué, Appl. Catal. B Environ. 64, 243 (2006)

    Article  CAS  Google Scholar 

  16. M. Duca, B. van der Klugt, M.A. Hasnat, M. Machida, M.T.M. Koper, J. Catal. 275, 61 (2010)

    Article  CAS  Google Scholar 

  17. E. Verlato, S. Cattarin, N. Comisso, L. Mattarozzi, M. Musiani, L. Vázquez-Gómez, Electrocatalysis 4, 203 (2013)

    Article  CAS  Google Scholar 

  18. K.J. Reddy, J. Lin, Water Res. 34, 995 (2000)

    Article  CAS  Google Scholar 

  19. J.W. Peel, K.J. Reddy, B.P. Sullivan, J.M. Bowen, Water Res. 37, 2512 (2003)

    Article  CAS  Google Scholar 

  20. L.A. Estudillo-Wong, E.M. Arce-Estrada, N. Alonso-Vante, A. Manzo-Robledo, Catal. Today 166, 201 (2011)

    Article  CAS  Google Scholar 

  21. F.V. Andrade, L.J. Deiner, H. Varela, J.F.R. de Castro, I.A. Rodrigues, F.C. Nart, J. Electrochem. Soc. 154, F159 (2007)

    Article  CAS  Google Scholar 

  22. D. De, J.D. Englehardt, E.E. Kalu, J. Electrochem. Soc. 147, 4224 (2000)

    Article  CAS  Google Scholar 

  23. C. Cachet-Vivier, S. Bastide, M. Laurent, C. Zlotea, M. Latroche, Electrochim. Acta 83, 133 (2012)

    Article  CAS  Google Scholar 

  24. C. Cachet-Vivier, M. Keddam, V. Vivier, L.T. Yu, J. Electroanal. Chem. 688, 12 (2013)

    Article  CAS  Google Scholar 

  25. H.-L. Luo, P. Duwez, J. Common Met. 6, 248 (1964)

    Article  CAS  Google Scholar 

  26. J. H. He, H. W. Sheng, J. S. Lin, P. J. Schilling, R. C. Tittsworth, and E. Ma, Phys. Rev. Lett. 89, 125507 (2002)

  27. P.M. Tucker, M.J. Waite, B.E. Hayden, J. Appl. Electrochem. 34, 781 (2004)

    Article  CAS  Google Scholar 

  28. O.A. Petrii, T.Y. Safonova, J. Electroanal. Chem. 331, 897 (1992)

    Article  CAS  Google Scholar 

  29. R.G. Compton, C.E. Banks, Understanding voltammetry, 2nd edn. (Imperial College Press, London, 2011)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Centre National de la Recherche Scientifique and the University Paris-Est Créteil and thank Junxian Zhang for the ICP-OES analysis. P. Mirzaei acknowledges MBA Water Treatment Chemicals Co. for the financial support of his PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Bastide.

Electronic Supplementary Material

ESM 1

(DOCX 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, P., Bastide, S., Aghajani, A. et al. Electrocatalytic Reduction of Nitrate and Nitrite at CuRh Nanoparticles/C Composite Electrodes. Electrocatalysis 9, 343–351 (2018). https://doi.org/10.1007/s12678-017-0437-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0437-z

Keywords

Navigation