, Volume 9, Issue 3, pp 287–292 | Cite as

Spinel Manganese Ferrites for Oxygen Electrocatalysis: Effect of Mn Valency and Occupation Site

  • Ye Zhou
  • Yonghua Du
  • Shibo Xi
  • Zhichuan J. Xu
Original Paper


Spinel catalysts have been widely explored for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). To consolidate the understanding on electrocatalysis by spinel family, intermediate spinels should be deliberately examined because most spinel oxides are of intermediate structure. Here, we report an investigation on the ORR and OER performance of intermediate spinel MnFe2O4. The modulation of cation oxidation state and inversion degree of spinel MnFe2O4 were achieved by a simple annealing process. X-ray absorption spectroscopy analysis reveals that the Mn occupancy in octahedral sites varied from 0.25 ~ 0.41 and Mn cations were oxidized from 2+ to 3+ with increasing temperature treatment. Convinced by the leading role of octahedral-geometric, we further reveal the role of Mn oxidation state through normalizing the activity to active Mn[Oh] site number. Our findings clearly indicate that Mn3+ was more catalytically active than Mn2+ in catalyzing ORR and OER.

Graphical Abstract

Both Mn occupancy in octahedral site and its oxidation state play dominant roles in determining the catalytic activities of spinel manganese ferrites toward oxygen electrocatalysis.


Spinel oxide Manganese valence Cation distribution Oxygen reduction reaction Oxygen evolution reaction 



The authors thank the Facility for Analysis, Characterization, Testing and Simulation (FACTS) in Nanyang Technological University for materials characterizations. Authors appreciate the XAFCA beamline [30] of the Singapore Synchrotron Light Source for the XAFS characterization.

Funding Information

This work was supported by the Singapore Ministry of Education Tier 2 Grant (MOE2015-T2-1-020) and the Singapore National Research Foundation under its Campus for Research Excellence and Technological Enterprise (CREATE) program.

Supplementary material

12678_2017_429_MOESM1_ESM.docx (361 kb)
ESM 1 (DOCX 361 kb)


  1. 1.
    J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem. 3, 546 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu, Z. Shao, Adv. Mater. 27, 7150 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 136, 4394 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao, Y. Lin, W. Chu, Z. Peng, C. Wu, Y. Xie, Adv. Mater. 27, 5989 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Zhu, S. Zhang, Y.-X. Huang, L. Wu, S. Sun, Nano Lett. 13, 2947 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn, Z.J. Xu, Adv. Mater. (2017)Google Scholar
  7. 7.
    C. Wei, Z. Feng, M. Baisariyev, L. Yu, L. Zeng, T. Wu, H. Zhao, Y. Huang, M.J. Bedzyk, T. Sritharan, Z.J. Xu, Chem. Mater. 28, 4129 (2016)CrossRefGoogle Scholar
  8. 8.
    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113, 8606 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Levy, L. Pastero, A. Hoser, G. Viscovo, Solid State Commun. 201, 15 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Li, H. Yuan, G. Li, Y. Liu, J. Leng, J. Magn. Magn. Mater. 322, 3396 (2010)CrossRefGoogle Scholar
  11. 11.
    X. Wang, Y. Liu, T. Zhang, Y. Luo, Z. Lan, K. Zhang, J. Zuo, L. Jiang, R. Wang, ACS Catal. (2017)Google Scholar
  12. 12.
    T.W. Kim, M.A. Woo, M. Regis, K.S. Choi, J. Phys. Chem. Lett. 5, 2370 (2014)CrossRefGoogle Scholar
  13. 13.
    W. Guangping, W.D. Jun Wang, L.L. Yao Nie, X. Qi, S. Chen, Z. Wei, Angew. Chem. Int. Ed. 54, 1 (2015)CrossRefGoogle Scholar
  14. 14.
    C.S. Zhichuan Xu, Y. Hou, H. Gao, S. Sun, Chem. Mater. 21, 1778 (2009)CrossRefGoogle Scholar
  15. 15.
    D. Carta, M.F. Casula, G. Mountjoy, A. Corrias, Phys. Chem. Chem. Phys. 10, 3108 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Zhu, S. Zhang, Y.X. Huang, L. Wu, S. Sun, Nano Lett. 13, 2947 (2013)CrossRefGoogle Scholar
  17. 17.
    C.M. Sorensen, K.J. Klabunde, A. Kostikas, Phys. Rev. B 54, 9288 (1996)CrossRefGoogle Scholar
  18. 18.
    D. Carta, M.F. Casula, P. Floris, A. Falqui, G. Mountjoy, A. Boni, C. Sangregorio, A. Corrias, Phys. Chem. Chem. Phys. 12, 5074 (2010)CrossRefGoogle Scholar
  19. 19.
    K. Vamvakidis, M. Katsikini, D. Sakellari, E.C. Paloura, O. Kalogirou, C. Dendrinou-Samara, Dalton Trans. 43, 12754 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Dau, P. Liebisch, M. Haumann, Anal. Bioanal. Chem. 376, 562 (2003)CrossRefGoogle Scholar
  21. 21.
    H. Yamaguchi, A. Yamada, H. Uwe, Phys. Rev. B 58, 8 (1998)CrossRefGoogle Scholar
  22. 22.
    M. Newville, Rev. Mineral. Geochem. 78, 33 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Du, J.-O. Wang, L. Jiang, L.S. Borgna, Y. Wang, Y. Zheng, T. Hu, J. Synchrotron Radiat. 21, 756 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Wei, L. Yu, C. Cui, J. Lin, C. Wei, N. Mathews, F. Huo, T. Sritharan, Z. Xu, Chem. Commun. 50, 7885 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, The Journal of Physical Chemistry Letters. 3, 399 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Suntivich, K.J.A. May, H. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334, 1383 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Grimaud, C.E. Carlton, M. Risch, W.T. Hong, K.J. May, Y. Shao-Horn, J. Phys. Chem. C 117, 25926 (2013)CrossRefGoogle Scholar
  28. 28.
    E. Vago, E. Calvo, J. Electroanal. Chem. 339, 41 (1992)CrossRefGoogle Scholar
  29. 29.
    K.A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, ACS Catal. 5, 6021 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Du, Y. Zhu, S. Xi, P. Yang, H.O. Moser, M.B.H. Breese, A. Borgna, J. Synchrotron Rad. 22, 839–843 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ye Zhou
    • 1
  • Yonghua Du
    • 2
  • Shibo Xi
    • 2
  • Zhichuan J. Xu
    • 1
    • 3
    • 4
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Institute of Chemical and Engineering Sciences A*STARSingaporeSingapore
  3. 3.Solar Fuels LaboratoryNanyang Technological UniversitySingaporeSingapore
  4. 4.Energy Research Institute @ Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations