, Volume 9, Issue 3, pp 302–313 | Cite as

Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells—Effect of Humidification

  • Tonny Søndergaard
  • Lars Nilausen Cleemann
  • Lijie Zhong
  • Hans Becker
  • Thomas Steenberg
  • Hans Aage Hjuler
  • Larisa Seerup
  • Qingfeng Li
  • Jens Oluf Jensen
Original Research


In the present work, high-temperature polymer electrolyte membrane fuel cells were subjected to accelerated stress tests of 30,000 potential cycles between 0.6 and 1.0 V at 160 °C (133 h cycling time). The effect that humidity has on the catalyst durability was studied by testing either with or without humidification of the nitrogen that was used as cathode gas during cycling segments. Pronounced degradation was seen from the polarization curves in both cases, though permanent only in the humidified case. In the unhumidified case, the performance loss was more or less recoverable following 24 h of operation at 200 mA cm−2. A difference in degradation behavior was verified with electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The strong effect of humidification is explained by drying of the phosphoric acid that is in the catalyst layer(s) versus maintaining humidification of this region. Catalyst degradation due to platinum dissolution, transport of its ions, and eventual recrystallization is reduced when this portion of the acid dries out. Consequently, catalyst particles are only mildly affected by the potential cycling in the unhumidified case.

Graphical Abstract


Durability Accelerated stress test Potential cycling Polymer electrolyte membrane Fuel cell Polybenzimidazole Platinum dissolution 


Funding Information

This work has been financially supported by the Danish ForskEL program (DuRaPEM III, no. 2013-1-12064; UPCAT, no. 2015-1-12315; SMARTMEA, no. 2014-1-12218) and by Innovation Fund Denmark (4M Centre, no. 12-132710).


  1. 1.
    M.T.D. Jakobsen, J.O. Jensen, L.N. Cleemann, Q. Li, in High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status and Perspectives, ed. by Q. Li, D. Aili, H.A. Hjuler, J.O. Jensen. (Springer, Cham, 2016), pp. 487–509CrossRefGoogle Scholar
  2. 2.
    T.J. Schmidt, in Polymer Electrolyte Fuel Cell Durability, ed. by F.N. Büchi, M. Inaba, T.J. Schmidt. (Springer, New York, 2009), pp. 199–221CrossRefGoogle Scholar
  3. 3.
    P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrochem. Soc. 152, A2256-A2271 (2005)CrossRefGoogle Scholar
  4. 4.
    Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top. Catal. 46, 285–305 (2007)CrossRefGoogle Scholar
  5. 5.
    J. Li, in PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, ed. by J. Zhang. (Springer, London, 2008), pp. 1041–1094CrossRefGoogle Scholar
  6. 6.
    K. Sasaki, M. Shao, R. Adzic, in Polymer Electrolyte Fuel Cell Durability, ed. by F.N. Büchi, M. Inaba, T.J. Schmidt. (Springer, New York, 2009), pp. 7–27CrossRefGoogle Scholar
  7. 7.
    K. Kinoshita, Carbon: Electrochemical and Physiochemical Properties (Wiley, New York, 1988), pp. 316–334Google Scholar
  8. 8.
    A.V. Virkar, Y. Zhou, J. Electrochem. Soc. 154, B540–B547 (2007)CrossRefGoogle Scholar
  9. 9.
    M.J. Eslamibidgoli, J. Huang, T. Kadyk, A. Malek, M. Eikerling, Nano Energy 29, 334–361 (2016)CrossRefGoogle Scholar
  10. 10.
    V. Atrazhev, S.F. Burlatsky, N.E. Cipollini, D.A. Condit, N. Erikhman, ECS Trans. 1, 239–246 (2006)Google Scholar
  11. 11.
    A. Ohma, S. Suga, S. Yamamoto, K. Shinohara, ECS Trans. 3, 519–529 (2006)CrossRefGoogle Scholar
  12. 12.
    W. Bi, G.E. Gray, T.F. Fuller, Electrochem. Solid State Lett. 10, B101–B104 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, B.A. Litteer, W. Gu, H. Liu, H.A. Gasteiger, J. Electrochem. Soc. 154, B1006–B1011 (2007)CrossRefGoogle Scholar
  14. 14.
    L. Kim, C.G. Chung, Y.W. Sung, J.S. Chung, J. Power Sources 183, 524–532 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Cherevko, N. Kulyk, K.J.J. Mayrhofer, Nano Energy 29, 275–298 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Hartnig, T.J. Schmidt, J. Power Sources 196, 5564–5572 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Rau, A. Niedergesäß, C. Cremers, S. Alfaro, T. Steenberg, H.A. Hjuler, Fuel Cells 16, 577–583 (2016)Google Scholar
  18. 18.
    R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, J. Power Sources 163, 76–81 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Uchimura, S. Sugawara, Y. Suzuki, J. Zhang, S.S. Kocha, ECS Trans. 16, 225–234 (2008)CrossRefGoogle Scholar
  20. 20.
    W. Bi, Q. Sun, Y. Deng, T.F. Fuller, Electrochim. Acta 54, 1826–1833 (2009)CrossRefGoogle Scholar
  21. 21.
    F.T. Wagner, S.G. Yan, P.T. Yu, in Handbook of Fuel Cells: Fundamentals, Technology and Applications—Volume 5: Advances in Electrocatalysis, Materials, Diagnostics and Durability, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger (Wiley, Weinheim, 2009), p. 250–264Google Scholar
  22. 22.
    S.S. Kocha, in Polymer Electrolyte Fuel Cell Degradation, ed. by M.M. Mench, E.C. Kumbur, T.N. Veziroğlu. (Academic, Oxford, 2012), pp. 89–214CrossRefGoogle Scholar
  23. 23.
    Y. Zhai, H. Zhang, D. Xing, Z.-G. Shao, J. Power Sources 164, 126–133 (2007)CrossRefGoogle Scholar
  24. 24.
    T.J. Schmidt, J. Baurmeister, J. Power Sources 176, 428–434 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Yu, L. Xiao, B.C. Benicewicz, Fuel Cells 8, 165–174 (2008)Google Scholar
  26. 26.
    P. Moçotéguy, B. Ludwig, J. Scholta, Y. Nedellec, D.J. Jones, J. Rozière, Fuel Cells 10, 299–331 (2010)CrossRefGoogle Scholar
  27. 27.
    M.R. Berber, T. Fujigaya, K. Sasaki, N. Nakashima, Sci Rep 3, 1764 (2013)CrossRefGoogle Scholar
  28. 28.
    L.N. Cleemann, F. Buazar, Q. Li, J.O. Jensen, C. Pan, T. Steenberg, S. Dai, N.J. Bjerrum, Fuel Cells 13, 822–831 (2013)Google Scholar
  29. 29.
    M. Rastedt, D. Schonvogel, P. Wagner, ECS Trans. 64, 741–753 (2014)CrossRefGoogle Scholar
  30. 30.
    N. Pilinski, M. Rastedt, P. Wagner, ECS Trans. 69, 323–335 (2015)CrossRefGoogle Scholar
  31. 31.
    F.J. Pinar, N. Pilinski, M. Rastedt, P. Wagner, Int. J. Hydrog. Energy 40, 5432–5438 (2015)CrossRefGoogle Scholar
  32. 32.
    F. Zhou, S.J. Andreasen, S.K. Kær, D. Yu, Int. J. Hydrog. Energy 40, 2833–2839 (2015)CrossRefGoogle Scholar
  33. 33.
    F.J. Pinar, M. Rastedt, N. Pilinski, P. Wagner, Int. J. Hydrog. Energy 41, 19463–19474 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Rastedt, F.J. Pinar, N. Pilinski, A. Dyck, P. Wagner, ECS Trans. 75, 455–469 (2016)CrossRefGoogle Scholar
  35. 35.
    D. Schonvogel, M. Rastedt, P. Wagner, M. Wark, A. Dyck, Fuel Cells 16, 480–489 (2016)Google Scholar
  36. 36.
    R. Taccani, T. Chinese, M. Boaro, Int. J. Hydrog. Energy 42, 1875–1883 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Vassiliev, High Temperature PEM Fuel Cells and Organic Fuels. (PhD thesis, Department of Energy Conversion and Storage, Technical University of Denmark, 2014)Google Scholar
  38. 38.
    M. Prasanna, H.Y. Ha, E.A. Cho, S.-A. Hong, I.-H. Oh, J. Power Sources 137, 1–8 (2004)CrossRefGoogle Scholar
  39. 39.
    K. O'Neil, J.P. Meyers, R.M. Darling, M.L. Perry, Int. J. Hydrog. Energy 37, 373–382 (2012)CrossRefGoogle Scholar
  40. 40.
    X.-Z. Yuan, S. Chaojie, W. Haijiang, Z. Jiujun, Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications (Springer, London, 2010), pp. 193–262CrossRefGoogle Scholar
  41. 41.
    C. Korte, F. Conti, J. Wackerl, W. Lehnert, in High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status and Perspectives, ed. by Q. Li, D. Aili, H.A. Hjuler, J.O. Jensen. (Springer, Cham, 2016), pp. 169–194CrossRefGoogle Scholar
  42. 42.
    J.-P. Melchior, K.-D. Kreuer, J. Maier, Phys. Chem. Chem. Phys. 19, 587–600 (2017)CrossRefGoogle Scholar
  43. 43.
    T. Engl, K.E. Waltar, L. Gubler, T.J. Schmidt, J. Electrochem. Soc. 161, F500–F505 (2014)CrossRefGoogle Scholar
  44. 44.
    R.M. Darling, J.P. Meyers, J. Electrochem. Soc. 152, A242–A247 (2005)CrossRefGoogle Scholar
  45. 45.
    M.P. Rodgers, L.J. Bonville, H.R. Kunz, D.K. Slattery, J.M. Fenton, Chem. Rev. 112, 6075–6103 (2012)CrossRefGoogle Scholar
  46. 46.
    M.J. Eslamibidgoli, P.-É.A. Melchy, M.H. Eikerling, Phys. Chem. Chem. Phys. 17, 9802–9811 (2015)CrossRefGoogle Scholar
  47. 47.
    R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-I. Kimijima, N. Iwashita, Chem. Rev. 107, 3904–3951 (2007)CrossRefGoogle Scholar
  48. 48.
    P. Bindra, S.J. Clouser, E. Yeager, J. Electrochem. Soc. 126, 1631–1632 (1979)CrossRefGoogle Scholar
  49. 49.
    K. Mitsuda, H. Shiota, T. Murahashi, Corrosion 46, 628–633 (1990)CrossRefGoogle Scholar
  50. 50.
    Q. Li, X. Gang, H.A. Hjuler, R.W. Berg, N.J. Bjerrum, J. Electrochem. Soc. 141, 3114–3119 (1994)CrossRefGoogle Scholar
  51. 51.
    R. Zeis, Beilstein J. Nanotechnol. 6, 68–83 (2015)CrossRefGoogle Scholar
  52. 52.
    K.E. Gubbins, R.D. Walker Jr., J. Electrochem. Soc. 112, 469–471 (1965)Google Scholar
  53. 53.
    K. Klinedinst, J.A.S. Bett, J. Macdonald, P. Stonehart, J. Electroanal. Chem. Interfacial Electrochem. 57, 281–289 (1974)CrossRefGoogle Scholar
  54. 54.
    F. Gan, D.-T. Chin, J. Appl. Electrochem. 23, 452–455 (1993)Google Scholar
  55. 55.
    Z. Liu, J.S. Wainright, M.H. Litt, R.F. Savinell, Electrochim. Acta 51, 3914–3923 (2006)CrossRefGoogle Scholar
  56. 56.
    M. Fleige, K. Holst-Olesen, G.K.H. Wiberg, M. Arenz, Electrochim. Acta 209, 399–406 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Energy Conversion and StorageTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Danish Power Systems Ltd.KvistgårdDenmark

Personalised recommendations