, Volume 9, Issue 2, pp 585–596 | Cite as

Dispositions Toward Flow and Mindfulness Predict Dispositional Insight

  • Linda A. Ovington
  • Anthony J. Saliba
  • Jeremy Goldring


This study aimed to investigate whether dispositions to positive affect (PA), mindfulness, and flow states predict a disposition toward insight. Using a sample of 1069 participants, two structural equation models (SEMs) were performed; the first included positive affect, mindfulness, and flow as the predictors. The second SEM repeated this, but with the nine components of flow included separately. In the first model, mindfulness and flow significantly predicted insight; PA showed no effect. In the second model, PA and mindfulness showed an effect. The subcomponents of flow—merging of action and awareness, unambiguous feedback, and transformation of time—had the strongest effect on insight, followed by autotelic experience. Clear goals negatively affected insight.


Insight Flow Mindfulness Positive affect Disposition Structural equation modeling 



This work was funded under an Australian Government Research Training Program Scholarship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors. We thank the Charles Sturt University Writing Circle for providing insightful comments on the content and expression of ideas.

Author Contributions

LO: designed and executed the study, and conducted the analyses of the data, and wrote the paper. AS: collaborated on the design of the study, writing, and editing of the manuscript. JG: collaborated on the design of the study, writing, and editing of the manuscript.

Compliance with Ethical Standards

The study was approved by the Charles Sturt University, Faculty of Arts Ethics Committee. All procedures performed in the study were in accordance with the ethical standards of the institution and with the 1964 Helsinki declaration and its later amendments. Participants gave informed consent through accessing the study online via a link in an email inviting potential respondents to participate.

Conflict of Interest

The authors declare that they have no competing interests.


  1. Asakawa, K. (2004). Flow experience and autotelic personality in Japanese college students: how do they experience challenges in daily life? Journal of Happiness Studies, 5(2), 123–154.CrossRefGoogle Scholar
  2. Baas, M., De Dreu, C. K., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134(6), 779–806.CrossRefPubMedGoogle Scholar
  3. Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13(1), 27–45.CrossRefPubMedGoogle Scholar
  4. Baumann, N. (2012). Autotelic personality. In S. Engeser (Ed.), Advances in flow research (pp. 165–186). New York: Springer.CrossRefGoogle Scholar
  5. Baumann, N., & Kuhl, J. (2002). Intuition, affect, and personality: unconscious coherence judgments and self-regulation of negative affect. Journal of Personality and Social Psychology, 83(5), 1213–1223.CrossRefPubMedGoogle Scholar
  6. Baumann, N., & Kuhl, J. (2005). Positive affect and flexibility: overcoming the precedence of global over local processing of visual information. Motivation and Emotion, 29(2), 123–134. Scholar
  7. Baumann, N., & Scheffer, D. (2010). Seeing and mastering difficulty: the role of affective change in achievement flow. Cognition and Emotion, 24(8), 1304–1328. Scholar
  8. Baumann, N., Kaschel, R., & Kuhl, J. (2005). Striving for unwanted goals: stress-dependent discrepancies between explicit and implicit achievement motives reduce subjective well-being and increase psychosomatic symptoms. Journal of Personality and Social Psychology, 89(5), 781.CrossRefPubMedGoogle Scholar
  9. Beeman, M. J., Friedman, R. B., Grafman, J., Perez, E., Diamond, S., & Lindsay, M. B. (1994). Summation priming and coarse semantic coding in the right hemisphere. Journal of Cognitive Neuroscience, 6(1), 26–45.CrossRefPubMedGoogle Scholar
  10. Begley, S. (2007). Train your mind, change your brain: how a new science reveals our extraordinary potential to transform ourselves. New York: Random House Digital, Inc..Google Scholar
  11. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.CrossRefPubMedGoogle Scholar
  12. Bentler, P. M., & Chou, C.-P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78–117.CrossRefGoogle Scholar
  13. Bergomi, C., Tschacher, W., & Kupper, Z. (2013). The assessment of mindfulness with self-report measures: existing scales and open issues. Mindfulness, 4(3), 191–202.CrossRefGoogle Scholar
  14. Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J.,... Velting, D. (2004). Mindfulness: a proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230–241.Google Scholar
  15. Bodner, T. E. (2000). On the assessment of individual differences in mindful information processing. (PhD Thesis), Harvard University, Cambridge, United States. Retrieved from
  16. Bowden, E. M. (1997). The effect of reportable and unreportable hints on anagram solution and the aha! experience. Consciousness and Cognition, 6(4), 545–573.CrossRefPubMedGoogle Scholar
  17. Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behavior Research Methods, 35(4), 634–639.CrossRefGoogle Scholar
  18. Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84(4), 822–848.CrossRefPubMedGoogle Scholar
  19. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park: Sage.Google Scholar
  20. Carver, C. S., & Scheier, M. F. (1990). Origins and functions of positive and negative affect: a control-process view. Psychological Review, 97(1), 19–35.CrossRefGoogle Scholar
  21. Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Sociological Methods and Research, 36(4), 462–494. Scholar
  22. Cohen, J. (1988). Statistical power analysis for the behavioral sciencies (2nd ed.). New York: Routledge.Google Scholar
  23. Cortina, J. M., & Landis, R. S. (2009). When small effect sizes tell a big story, and when large effect sizes don’t. In C. E. Lance & R. J. Vandenberg (Eds.), Statistical and methodological myths and urban legends: doctrine, verity and fable in the organizational and social sciences (pp. 287–308). New York: Routledge.Google Scholar
  24. Csikszentmihalyi, M. (1991). Flow: the psychology of optimal experience. New York: Harper Perennial.Google Scholar
  25. Csikszentmihalyi, M. (2000). Beyond boredom and anxiety: experiencing flow in work and play. San Francisco: Jossey-Bass.Google Scholar
  26. Csikszentmihalyi, M. (2014). Toward a psychology of optimal experience. In M. Csikszentmihalyi (Ed.), Flow and the foundations of positive psychology (pp. 209–226). Dordrecht: Springer.Google Scholar
  27. Davidson, J. E., & Sternberg, R. J. (2003). The psychology of problem solving. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), 1–113.CrossRefGoogle Scholar
  29. Eubanks, D. L., Murphy, S. T., & Mumford, M. D. (2010). Intuition as an influence on creative problem-solving: the effects of intuition, positive affect, and training. Creativity Research Journal, 22(2), 170–184. Scholar
  30. Fleck, J. I., & Weisberg, R. W. (2013). Insight versus analysis: evidence for diverse methods in problem solving. Journal of Cognitive Psychology, 25(4), 436–463. Scholar
  31. Gasper, K., & Clore, G. L. (2002). Attending to the big picture: mood and global versus local processing of visual information. Psychological Science, 13(1), 34–40.CrossRefPubMedGoogle Scholar
  32. Gilhooly, K., & Fioratou, E. (2009). Executive functions in insight versus non-insight problem solving: an individual differences approach. Thinking and Reasoning, 15(4), 355–376.CrossRefGoogle Scholar
  33. Grewal, R., Cote, J. A., & Baumgartner, H. (2004). Multicollinearity and measurement error in structural equation models: implications for theory testing. Marketing Science, 23(4), 519–529.CrossRefGoogle Scholar
  34. Gulliksen, H., & Tukey, J. W. (1958). Reliability for the law of comparative judgment. Psychometrika, 23(2), 95–110.CrossRefGoogle Scholar
  35. Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.Google Scholar
  36. Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.CrossRefGoogle Scholar
  37. Isen, A. M., Johnson, M. M., Mertz, E., & Robinson, G. F. (1985). The influence of positive affect on the unusualness of word associations. Journal of Personality and Social Psychology, 48(6), 1413–1426.CrossRefPubMedGoogle Scholar
  38. Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. Journal of Personality and Social Psychology, 52, 1122–1131.CrossRefPubMedGoogle Scholar
  39. Jackson, S. A., & Eklund, R. C. (2002). Assessing flow in physical activity: the flow state scale-2 and dispositional flow scale-2. Journal of Sport and Exercise Psychology, 24(2), 133–150.CrossRefGoogle Scholar
  40. Jackson, S. A., Martin, A. J., & Eklund, R. C. (2008). Long and short measures of flow: the construct validity of the FSS-2, DFS-2, and new brief counterparts. Journal of Sport and Exercise Psychology, 30(5), 561–587.CrossRefPubMedGoogle Scholar
  41. Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R.,... Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), 500–510.Google Scholar
  42. Kershaw, T. C., Flynn, C. K., & Gordon, L. T. (2013). Multiple paths to transfer and constraint relaxation in insight problem solving. Thinking & Reasoning, 19(1), 96–136. Scholar
  43. Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 71–93.CrossRefPubMedGoogle Scholar
  44. Kounios, J., & Beeman, M. J. (2015). The Eureka factor: creative insights and the brain. London: Random House.Google Scholar
  45. Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., & Jung-Beeman, M. (2006). The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882–890.CrossRefPubMedGoogle Scholar
  46. Kuhl, J. (2000). The volitional basis of personality systems interaction theory: applications in learning and treatment contexts. International Journal of Educational Research, 33(7), 665–703.CrossRefGoogle Scholar
  47. Kuhl, J., & Kazén, M. (1999). Volitional facilitation of difficult intentions: joint activation of intention memory and positive affect removes Stroop interference. Journal of Experimental Psychology: General, 128(3), 382.CrossRefGoogle Scholar
  48. Langer, E. J. (1997). The power of mindful learning. Boston: Da Capo Press.Google Scholar
  49. Langer, E. J. (2000). Mindful learning. Current Directions in Psychological Science, 9(6), 220–223.CrossRefGoogle Scholar
  50. Langer, E. J., & Moldoveanu, M. (2000). The construct of mindfulness. Journal of Social Issues, 56(1), 1–9.CrossRefGoogle Scholar
  51. Lau, M. A., Bishop, S. R., Segal, Z. V., Buis, T., Anderson, N. D., Carlson, L.,... Devins, G. (2006). The Toronto mindfulness scale: development and validation. Journal of Clinical Psychology, 62(12), 1445–1468.Google Scholar
  52. Løvstad, M., Funderud, I., Meling, T., Krämer, U. M., Voytek, B., Due-Tønnessen, P.,... Solbakk, A. K. (2012). Anterior cingulate cortex and cognitive control: neuropsychological and electrophysiological findings in two patients with lesions to dorsomedial prefrontal cortex. Brain and Cognition, 80(2), 237–249.
  53. Lutz, A., Greishcar, L. L., Rawlings, N. B., Ricard, M., & Davidson, R. J. (2004). Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. PANAS, 101, 16369–16373.CrossRefGoogle Scholar
  54. Maier, N. R. F. (1940). The behavior mechanisms concerned with problem solving. Psychological Review, 47(1), 43.CrossRefGoogle Scholar
  55. Martin, A., & Jackson, S. (2008). Brief approaches to assessing task absorption and enhanced subjective experience: examining ‘short’ and ‘core’ flow in diverse performance domains. Motivation & Emotion, 32(3), 141–157. Scholar
  56. Martinsen, Ø. (1993). Insight problems revisited: the influence of cognitive styles and experience on creative problem solving. Creativity Research Journal, 6(4), 435–447.CrossRefGoogle Scholar
  57. Maruyama, G. M. (1997). Basics of structural equation modeling. London: Sage Publications.Google Scholar
  58. McGaw, B., & Glass, G. V. (1980). Choice of the metric for effect size in meta-analysis. American Educational Research Journal, 17(3), 325–337.CrossRefGoogle Scholar
  59. Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220–232.CrossRefPubMedGoogle Scholar
  60. Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory and Cognition, 15(3), 238–246.CrossRefPubMedGoogle Scholar
  61. Nakamura, J., & Csikszentmihalyi, M. (2002). The concept of flow. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 89–105). New York: Oxford University Press.Google Scholar
  62. Oaksford, M., Morris, F., Grainger, B., & Williams, J. M. G. (1996). Mood, reasoning, and central executive processes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(2), 476–492.Google Scholar
  63. Ostafin, B. D., & Kassman, K. T. (2012). Stepping out of history: mindfulness improves insight problem solving. Consciousness and Cognition, 21, 1031–1036.CrossRefPubMedGoogle Scholar
  64. Ovington, L. A., Saliba, A. J., Moran, C. C., Goldring, J., & MacDonald, J. B. (2015). Do people really have insights in the shower? The when, where and who of the aha! moment. The Journal of Creative Behavior, In Press.
  65. Ovington, L. A., Saliba, A. J., & Goldring, J. (2016). Dispositional insight scale: development and validation of a tool that measures propensity toward insight in problem solving. Creativity Research Journal, 28(3), 342–347. Scholar
  66. Phillips, L. H., Bull, R., Adams, E., & Fraser, L. (2002). Positive mood and executive function: evidence from stroop and fluency tasks. Emotion, 2(1), 12–22.CrossRefPubMedGoogle Scholar
  67. Ritchhart, R., & Perkins, D. N. (2000). Life in the mindful classroom: nurturing the disposition of mindfulness. Journal of Social Issues, 56(1), 27–47.CrossRefGoogle Scholar
  68. Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. PANAS, 104(1), 383–388.CrossRefGoogle Scholar
  69. Sakaki, M., & Niki, K. (2011). Effects of the brief viewing of emotional stimuli on understanding of insight solutions. Cognitive, Affective, & Behavioral Neuroscience, 11(4), 1–15.Google Scholar
  70. Smith, S. M. (1995a). Fixation, incubation, and insight in memory and creative thinking. In S. M. Smith, T. B. Ward, & R. A. Finke (Eds.), The creative cognition approach (pp. 135–156). London: The MIT Press.Google Scholar
  71. Smith, S. M. (1995b). Getting into and out of mental ruts. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 229–251). London: The MIT Press.Google Scholar
  72. Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. Structural Equation Modeling: A Multidisciplinary Journal, 5(4), 411–419. Scholar
  73. Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2008). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415–432.CrossRefGoogle Scholar
  74. Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics. Michigan: Allyn and Bacon.Google Scholar
  75. Ulrich, M., Keller, J., Hoenig, K., Waller, C., & Grön, G. (2014). Neural correlates of experimentally induced flow experiences. NeuroImage, 86, 194–202.CrossRefPubMedGoogle Scholar
  76. Walach, H., Buchheld, N., Buttenmüller, V., Kleinknecht, N., & Schmidt, S. (2006). Measuring mindfulness: the Freiburg mindfulness inventory (FMI). Personality and Individual Differences, 40(8), 1543–1555.CrossRefGoogle Scholar
  77. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Linda A. Ovington
    • 1
  • Anthony J. Saliba
    • 1
  • Jeremy Goldring
    • 1
  1. 1.School of PsychologyCharles Sturt UniversityWagga WaggaAustralia

Personalised recommendations