Degradation of Ciprofloxacin Using Ultrasound/ZnO/Oxone Process from Aqueous Solution-Lab-Scale Analysis and Optimization

Abstract

Nowadays, the existence of antibiotic compounds in pharmaceutical wastewaters is one of the new problems that can be considered in environmental pollution. The removal of ciprofloxacin from aqueous solutions is examined in the present study by using peroxymonosulfate (Oxone=PMS) activated with hybridized ultrasonic waves and synthesized ZnO nanoparticles. Operational parameters like ZnO nanoparticles dosage, initial pH, and peroxymonosulfate concentration, and their effect on the removal of the antibiotic have been investigated. The results showed 98.3% antibiotics removal observed with an initial pH of 3, ZnO nanoparticles dosage of 1 g/L, and peroxymonosulfate concentration of 1 g/L. This process had a high removal efficiency and was suitable for the removal of ciprofloxacin from aquatic environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Wynnae O. Antibiotics in the environment TESC 422 case study paper. 2003.

    Google Scholar 

  2. 2.

    Alijani, H. Q., Pourseyedi, S., Torkzadeh-Mahani, M., Seifalian, A., & Khatami, M. (2020). Bimetallic nickel-ferrite nanorod particles: Greener synthesis using rosemary and its biomedical efficiency. Artificial Cells, Nanomedicine, and Biotechnology., 48(1), 242–251.

    Article  Google Scholar 

  3. 3.

    Gagnon, C., Lajeunesse, A., Cejka, P., Gagne, F., & Hausler, R. (2008). Degradation of selected acidic and neutral pharmaceutical products in a primary-treated wastewater by disinfection processes. Ozone: Science and Engineering., 30(5), 387–392.

    Article  Google Scholar 

  4. 4.

    Dirany, A., Sirés, I., Oturan, N., & Oturan, M. A. (2010). Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere., 81(5), 594–602.

    Article  Google Scholar 

  5. 5.

    Capriotti, A. L., Cavaliere, C., Piovesana, S., Samperi, R., & Laganà, A. (2012). Multiclass screening method based on solvent extraction and liquid chromatography–tandem mass spectrometry for the determination of antimicrobials and mycotoxins in egg. Journal of Chromatography A., 1268, 84–90.

    Article  Google Scholar 

  6. 6.

    Peng, H., Pan, B., Wu, M., Liu, Y., Zhang, D., & Xing, B. (2012). Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity-and structure-controlled process. Journal of hazardous materials., 233, 89–96.

    Article  Google Scholar 

  7. 7.

    Bushra, M. U., Huda, M. N., Mostafa, M., Sultan, M. Z., & Rahman, A. (2013). Study of forced degradation of ciprofloxacin HCl indicating stability using RP-HPLC method Der. Pharm Chem., 5, 132–137.

    Google Scholar 

  8. 8.

    Ali, S. A., Mmuo, C. C., Abdulraheem, R. O., Abdulkareem, S. S., Alemika, E. T., Sani, M. A., et al. (2011). High performance liquid chromatography (HPLC) method development and validation indicating assay for ciprofloxacin hydrochloride. Journal of Applied Pharmaceutical Science., 1(8), 239.

    Google Scholar 

  9. 9.

    Sun, S.-P., Guo, H.-Q., Ke, Q., Sun, J.-H., Shi, S.-H., Zhang, M.-L., et al. (2009). Degradation of antibiotic ciprofloxacin hydrochloride by photo-Fenton oxidation process. Environmental Engineering Science., 26(4), 753–759.

    Article  Google Scholar 

  10. 10.

    Wei, R., Ge, F., Huang, S., Chen, M., & Wang, R. (2011). Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province. China. Chemosphere., 82(10), 1408–1414.

    Article  Google Scholar 

  11. 11.

    Le-Minh, N., Khan, S., Drewes, J., & Stuetz, R. (2010). Fate of antibiotics during municipal water recycling treatment processes. Water Research, 44(15), 4295–4323.

    Article  Google Scholar 

  12. 12.

    Khazeni, S., Hatamian-Zarmi, A., Yazdian, F., Mokhtari-Hosseini, Z. B., Ebrahimi-Hosseinzadeh, B., Noorani, B., et al. (2017). Production of nanocellulose in miniature-bioreactor: optimization and characterization. Preparative Biochemistry and Biotechnology., 47(4), 371–378.

    Article  Google Scholar 

  13. 13.

    Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment international., 35(2), 402–417.

    Article  Google Scholar 

  14. 14.

    Foong, L. K., Foroughi, M. M., Mirhosseini, A. F., Safaei, M., Jahani, S., Mostafavi, M., et al. (2020). Applications of nano-materials in diverse dentistry regimes. RSC Advances., 10(26), 15430–15460.

    Article  Google Scholar 

  15. 15.

    Lin, A. Y.-C., Lin, C.-F., Chiou, J.-M., & Hong, P. A. (2009). O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. Journal of hazardous materials., 171(1–3), 452–458.

    Article  Google Scholar 

  16. 16.

    Koyuncu, I., Arikan, O. A., Wiesner, M. R., & Rice, C. (2008). Removal of hormones and antibiotics by nanofiltration membranes. Journal of membrane science., 309(1–2), 94–101.

    Article  Google Scholar 

  17. 17.

    Kim, T.-H., Kim, S. D., Kim, H. Y., Lim, S. J., Lee, M., & Yu, S. (2012). Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV. Journal of hazardous materials., 227, 237–242.

    Article  Google Scholar 

  18. 18.

    Choi, K.-J., Son, H.-J., & Kim, S.-H. (2007). Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic. Science of the total environment., 387(1–3), 247–256.

    Article  Google Scholar 

  19. 19.

    Choi, K.-J., Kim, S.-G., & Kim, S.-H. (2008). Removal of antibiotics by coagulation and granular activated carbon filtration. Journal of hazardous materials., 151(1), 38–43.

    Article  Google Scholar 

  20. 20.

    Elmolla, E. S., & Chaudhuri, M. (2010). Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. Journal of hazardous materials., 173(1–3), 445–449.

    Article  Google Scholar 

  21. 21.

    Rauf, M., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical engineering journal., 151(1–3), 10–18.

    Article  Google Scholar 

  22. 22.

    Intarasuwan, K., Amornpitoksuk, P., Suwanboon, S., & Graidist, P. (2017). Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X= H, Na and NH4) and the cytotoxicity of the treated dye solutions. Separation and Purification Technology., 177, 304–312.

    Article  Google Scholar 

  23. 23.

    Pan, L., Muhammad, T., Ma, L., Huang, Z.-F., Wang, S., Wang, L., et al. (2016). MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Applied Catalysis B: Environmental., 189, 181–191.

    Article  Google Scholar 

  24. 24.

    Daneshvar, N., Aber, S., Dorraji, M. S., Khataee, A., & Rasoulifard, M. (2007). Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and purification Technology., 58(1), 91–98.

    Article  Google Scholar 

  25. 25.

    Alkasir, M., Samadi, N., Sabouri, Z., Mardani, Z., Khatami, M., & Darroudi, M. (2020). Evaluation cytotoxicity effects of biosynthesized zinc oxide nanoparticles using aqueous Linum Usitatissimum extract and investigation of their photocatalytic activity. Inorganic Chemistry Communications., 108066.

  26. 26.

    Segura, Y., Martínez, F., Melero, J. A., Molina, R., Chand, R., & Bremner, D. H. (2012). Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Applied Catalysis B: Environmental., 113, 100–106.

    Article  Google Scholar 

  27. 27.

    Eskandarloo, H., Badiei, A., Behnajady, M. A., & Ziarani, G. M. (2016). Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrasonics sonochemistry., 28, 169–177.

    Article  Google Scholar 

  28. 28.

    Soltani, R. D. C., Jorfi, S., Ramezani, H., & Purfadakari, S. (2016). Ultrasonically induced ZnO–biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultrasonics sonochemistry., 28, 69–78.

    Article  Google Scholar 

  29. 29.

    Ahmed, M. M., Barbati, S., Doumenq, P., & Chiron, S. (2012). Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chemical Engineering Journal., 197, 440–447.

    Article  Google Scholar 

  30. 30.

    Wei, C., Zhang, J., Zhang, Y., Zhang, G., Zhou, P., Li, W., et al. (2017). Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a co-NiOx catalyst. Water Science and Technology., 76(6), 1436–1446.

    Article  Google Scholar 

  31. 31.

    Ahmadi, S., Banach, A., Mostafapour, F. K., & Balarak, D. (2017). Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: Adsorption isotherm study. Desalination and water treatment., 89, 297–303.

    Article  Google Scholar 

  32. 32.

    Cai, C., Zhang, H., Zhong, X., & Hou, L. (2014). Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe–co/SBA-15 catalyst for the degradation of Orange II in water. Water Research, 66, 473–485.

    Article  Google Scholar 

  33. 33.

    Hou, L., Zhang, H., Wang, L., Chen, L., Xiong, Y., & Xue, X. (2013). Removal of sulfamethoxazole from aqueous solution by sono-ozonation in the presence of a magnetic catalyst. Separation and Purification Technology., 117, 46–52.

    Article  Google Scholar 

  34. 34.

    Zhang, H., Zhang, J., Zhang, C., Liu, F., & Zhang, D. (2009). Degradation of CI acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrasonics sonochemistry., 16(3), 325–330.

    MathSciNet  Article  Google Scholar 

  35. 35.

    Wang, X., Wang, L., Li, J., Qiu, J., Cai, C., & Zhang, H. (2014). Degradation of acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Separation and Purification Technology., 122, 41–46.

    Article  Google Scholar 

  36. 36.

    Rahdar, S., & Ahmadi, S. (2019). The removal of amoxicillin with Zno nanoparticles in combination with US-H2O2 advanced oxidation processes from aqueous solutions. Iranian Journal of Health Sciences., 7(1), 36–45.

    Google Scholar 

  37. 37.

    Liu, F., Yi, P., Wang, X., Gao, H., & Zhang, H. (2018). Degradation of acid Orange 7 by an ultrasound/ZnO-GAC/persulfate process. Separation and Purification Technology., 194, 181–187.

    Article  Google Scholar 

  38. 38.

    Kamani, H., Bazrafshan, E., Ashrafi, S. D., & Sancholi, F. (2017). Efficiency of sono-nano-catalytic process of TiO2 nano-particle in removal of erythromycin and metronidazole from aqueous solution. Journal of Mazandaran University of Medical Sciences., 27(151), 140–154.

    Google Scholar 

  39. 39.

    Hao, F., Guo, W., Wang, A., Leng, Y., & Li, H. (2014). Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant. Ultrasonics sonochemistry., 21(2), 554–558.

    Article  Google Scholar 

  40. 40.

    Liang, C., Wang, Z.-S., & Bruell, C. J. (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere., 66(1), 106–113.

    Article  Google Scholar 

  41. 41.

    Sathishkumar, P., Pugazhenthiran, N., Mangalaraja, R. V., Asiri, A. M., & Anandan, S. (2013). ZnO supported CoFe2O4 nanophotocatalysts for the mineralization of direct blue 71 in aqueous environments. Journal of hazardous materials., 252, 171–179.

    Article  Google Scholar 

  42. 42.

    Zhang, X., Zhang, J., Huang, X., Wu, Q. P., Yan, C. H., & Lu, J. F. (2019). Efficient PMS activation by Zn/Fe-MOF s-derived ZnO/Fe3O4@ carbon spheres for the degradation of acid Orange 7. Water Environment Research.

  43. 43.

    Molinari, R., Pirillo, F., Loddo, V., & Palmisano, L. (2006). Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catalysis Today., 118(1–2), 205–213.

    Article  Google Scholar 

  44. 44.

    Gad-Allah, T. A., Ali, M. E., & Badawy, M. I. (2011). Photocatalytic oxidation of ciprofloxacin under simulated sunlight. Journal of hazardous materials., 186(1), 751–755.

    Article  Google Scholar 

  45. 45.

    Salari, M., Rakhshandehroo, G. R., & Nikoo, M. R. (2018). Degradation of ciprofloxacin antibiotic by homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products. Chemosphere., 206, 157–167.

    Article  Google Scholar 

  46. 46.

    Khoshnamvand, N., Mostafapour, F. K., Mohammadi, A., & Faraji, M. (2018). Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express, 8(1), 48.

    Article  Google Scholar 

  47. 47.

    Zhang, Y., Tran, H. P., Du, X., Hussain, I., Huang, S., Zhou, S., et al. (2017). Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: A mechanistic study. Chemical Engineering Journal., 308, 1112–1119.

    Article  Google Scholar 

  48. 48.

    Wang, A., Zhang, Y., Zhong, H., Chen, Y., Tian, X., Li, D., et al. (2018). Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation. Journal of hazardous materials., 342, 364–374.

    Article  Google Scholar 

  49. 49.

    Vasconcelos, T. G., Henriques, D. M., König, A., Martins, A. F., & Kümmerer, K. (2009). Photo-degradation of the antimicrobial ciprofloxacin at high pH: Identification and biodegradability assessment of the primary by-products. Chemosphere., 76(4), 487–493.

    Article  Google Scholar 

  50. 50.

    Zhang, C.-L., Qiao, G.-L., Zhao, F., & Wang, Y. (2011). Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. Journal of Molecular Liquids., 163(1), 53–56.

    Article  Google Scholar 

  51. 51.

    Nekouei, F., & Nekouei, S. (2017). Comparative study of photocatalytic activities of Zn5 (OH) 8Cl2· H2O and ZnO nanostructures in ciprofloxacin degradation: Response surface methodology and kinetic studies. Science of the Total Environment., 601, 508–517.

    Article  Google Scholar 

  52. 52.

    Nasiri, A., Tamaddon, F., Mosslemin, M. H., Amiri Gharaghani, M., & Asadipour, A. (2019). Magnetic nano-biocomposite CuFe2O4@ methylcellulose (MC) prepared as a new nano-photocatalyst for degradation of ciprofloxacin from aqueous solution. Environmental Health Engineering and Management Journal., 6(1), 41–51.

    Article  Google Scholar 

  53. 53.

    Mondal, S. K., Saha, A. K., & Sinha, A. (2018). Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. Journal of cleaner production., 171, 1203–1214.

    Article  Google Scholar 

  54. 54.

    Peng, G., Li, T., Ai, B., Yang, S., Fu, J., He, Q., et al. (2019). Highly efficient removal of enrofloxacin by magnetic montmorillonite via adsorption and persulfate oxidation. Chemical Engineering Journal., 360, 1119–1127.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Seyedeh Nastaran Asadzadeh or Mehrdad Khatami.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Firouzeh, N., Malakootian, M., Asadzadeh, S.N. et al. Degradation of Ciprofloxacin Using Ultrasound/ZnO/Oxone Process from Aqueous Solution-Lab-Scale Analysis and Optimization. BioNanoSci. (2021). https://doi.org/10.1007/s12668-021-00838-1

Download citation

Keywords

  • Peroxymonosulfate (Oxone)
  • Ultrasonic waves
  • Ciprofloxacin removal
  • ZnO nanoparticles