Medicinal Plant Leaves Extract Based Synthesis, Characterisations and Antimicrobial Activities of ZrO2 Nanoparticles (ZrO2 NPs)

Abstract

In this work, the ZrO2 NPs have been synthesised using the leaves extract of a medicinal plant Tinospora cordifolia (Giloy) and characterised by means of FESEM, EDX, FTIR and powder XRD techniques. The phytochemical analysis was indicating the presence of alkaloids, flavonoids, glycosides, tannins and other components in the leaves extract of Tinospora cordifolia. Such secondary metabolites act as stabilising, reducing and capping agents during the synthesis of nanoparticles. The synthetic method was found highly efficient, very low cost and eco-friendly. The bio-based ZrO2 NPs were utilised as antibacterial and antifungal agents. The antimicrobial study of ZrO2 NPs has been done by using well diffusion method against the different bacterial and fungal species. The maximum zones of inhibition have been found for Bacillus subtilis, Pseudomonas aeruginosa, Streptococcus mutans, Escherichia coli, Aspergillus fumigatus and Aspergillus niger at maximum dosage of ZrO2 NPs as 36 mm, 32 mm, 28 mm, 34 mm, 34 mm and 32 mm, respectively. The experimental data indicated the efficiency of synthetic method and best utilisation of ZrO2 NPs as strong antibacterial and antifungal agents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Zibareva, I. V. A. (2015). Review of information resources on nanoscience, nanotechnology, and nanomaterials. Scientific and Technical Information Processing, 42, 93–111.

    Article  Google Scholar 

  2. 2.

    Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634–641.

    Article  Google Scholar 

  3. 3.

    Radad, K., Al-Shraim, M., Moldzio, R., & Rausch, W. D. (2012). Recent advances in benefits and hazards of engineered nanoparticles. Environmental Toxicology and Pharmacology, 34, 661–672.

    Article  Google Scholar 

  4. 4.

    Sanchez-Dominguez, M., Boutonnet, M., & Solan, C. (2009). A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method. Journal of Nanoparticle Research, 11, 1823.

    Article  Google Scholar 

  5. 5.

    Castro-Alarcón, N., Herrera-Arizmendi, J. L., Marroquín-Carteño, L. A., Guzmán-Guzmán, I. P., Pérez-Centeno, A., & Santana-Aranda, M. A. (2016). Antibacterial activity of nanoparticles of titanium dioxide, intrinsic and doped with indium and iron. Microbiology Research International, 4, 55–62.

    Google Scholar 

  6. 6.

    Bindhu, M. R., Umadevi, M., Micheal, M. K., Arasu, M. V., & Al-Dhabi, N. A. (2016). Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Materials Letters, 166, 19–22.

    Article  Google Scholar 

  7. 7.

    Joshi, N. C., Kumar, V., Singh, A., & Singh, R. (2019). Characterisations, antimicrobial activities and biological synthesis of silver (Ag) nanoparticles using the leaf extract of Urtica dioica. Research Journal of Pharmacy and Technology, 12, 4429–4433.

    Article  Google Scholar 

  8. 8.

    Joshi, N. C., & Chhabra, J. (2019). Biological synthesis of silver nanoparticles using the tuberous root extract of Ipomoea batatas and their characterisations and antibacterial activity. Asian Journal of Pharmaceutical and Clinical Research, 12, 300–303.

    Article  Google Scholar 

  9. 9.

    Joshi, N. C., & Prakash, Y. (2019). Leaves extract-based biogenic synthesis of cupric oxide nanoparticles, characterizations, and antimicrobial activity. Asian Journal of Pharmaceutical and Clinical Research, 12, 288–291.

    Google Scholar 

  10. 10.

    Joshi, N. C., Joshi, E., & Singh, A. (2020). Biological synthesis, characterisations and antimicrobial activities of manganese dioxide (MnO2) nanoparticles. Research Journal of Pharmacy and Technology, 13, 135–140.

    Article  Google Scholar 

  11. 11.

    Joshi, N. C., Chhabra, J., Kaur, K., & Thakur, A. (2020). Potato tuber extract based synthesis, characterisation and antibacterial activity of silver nanoparticles. Octa Journal of Biosciences, 8, 17–20.

    Google Scholar 

  12. 12.

    Joshi, N. C., Gaur, A., & Singh, A. (2020). An eco-friendly synthesis of cupric oxide nanoparticles by using leaves extract of Psidium guajava, characterisations and antibacterial activities. Octa Journal of Biosciences, 8, 38–41.

    Google Scholar 

  13. 13.

    Salem, S. S., & Fouda, A. (2020). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research. https://doi.org/10.1007/s12011-020-02138-3.

  14. 14.

    Fouda, A., Hassan, S. E., Abdo, A. M., & El-Gamal, M. S. (2020). Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biological Trace Element Research, 195, 707–724. https://doi.org/10.1007/s12011-019-01883-4.

    Article  Google Scholar 

  15. 15.

    Fouda, A., Abdel-Maksoud, G., Abdel-Rahmana, M. A., Salema, S. S., El-Din Hassan, S., & El-Sadanyc, M. A. H. (2019). Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. International Biodeterioration and Biodegradation, 142, 160–169. https://doi.org/10.1016/j.ibiod.2019.05.012.

    Article  Google Scholar 

  16. 16.

    Fouda, A., Abdel-Maksoud, G., Abdel-Rahman, M. A., Eid, A. M., Barghoth, M. G., & El-Sadany, A. H. M. (2019). Monitoring the effect of biosynthesized nanoparticles against biodeterioration of cellulose-based materials by Aspergillus niger. Cellulose, 26, 6583–6597. https://doi.org/10.1007/s10570-019-02574-y.

    Article  Google Scholar 

  17. 17.

    Hassan, S. E., Fouda, A., Radwan, A. A., Salem, S. S., Barghoth, M. G., Awad, M. A., Abdo, A. M., & El-Gamal, M. S. (2019). Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Journal of Biological Inorganic Chemistry, 24, 377–393. https://doi.org/10.1007/s00775-019-01654-5.

    Article  Google Scholar 

  18. 18.

    Soliman, A. M., Abdel-Latif, W., Shehata, I. H., Fouda, A., Abdo, A. M., & Ahmed, Y. M. (2020). Green approach to overcome the resistance pattern of Candida spp using biosynthesized silver nanoparticles fabricated by Penicillium chrysogenum F9. Biological Trace Element Research. https://doi.org/10.1007/s12011-020-02188-7.

  19. 19.

    Chanel, T. H., Adri, H., Muhammad, D. B., Bambang, Y., & Fakhili, G. (2017). Green synthesis of silver nanoparticle and its antibacterial activity. Rasayan Journal of Chemistry, 10, 1137–1144. https://doi.org/10.7324/rjc.2017.1041875.

    Article  Google Scholar 

  20. 20.

    Choudhury, R., Majumder, M., Roy, D. N., Basumallick, S., & Misra, T. K. (2016). Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods. International Nano Letters, 6, 153–159. https://doi.org/10.1007/s40089-016-0181-z.

    Article  Google Scholar 

  21. 21.

    Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2013.01.003.

  22. 22.

    Arantes, T. M., Mambrini, G. P., Stroppa, D. G., Leite, E. R., Longo, E., Ramirez, A. J., & Camargo, E. R. (2010). Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process. Journal of Nanoparticle Research, 12, 3105–3110. https://doi.org/10.1007/sl1051-010-9906-5.

    Article  Google Scholar 

  23. 23.

    Padma, N., & Koser, A. A. (2016). Biological synthesis of ZrO2 nanoparticle using Azadirachta indica leaf extract. IRJET, 3, 2395–0056.

    Google Scholar 

  24. 24.

    Geethalakshmi, K., Prabhakaran, T., & Hemalatha, J. (2012). Dielectric studies on nano zirconium dioxide synthesized through co-precipitation process. International Journal of Metallurgical and Materials Engineering, 6, 256–259.

    Google Scholar 

  25. 25.

    Liu, X., Lu, G., & Yan, Z. (2003). Preliminary synthesis and characterization of mesoporous nanocrystalline zirconia. Journal of Natural Gas Chemistry, 12, 161–166.

    Google Scholar 

  26. 26.

    Singh, A. K., & Nakate, U. T. (2014). Microwave synthesis, characterization and photoluminescence properties of nanocrystalline zirconia. Scientific World Journal. https://doi.org/10.1155/2014/349457.

  27. 27.

    Madhusudhana, R., Sangamesha, K. R. G. K. U. L., & Shekar, G. L. (2014). Synthesis and characterization of zirconia by simple sol-gel route. International Journal of Advanced Research, 2, 2320–5407.

    Google Scholar 

  28. 28.

    Hu, C., Zhang, Z., Liu, H., Gao, P., & Wang, Z. L. (2006). Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles. Nanotechnol, 17, 5983–5987. https://doi.org/10.1088/0957-4484/17/24/013.

    Article  Google Scholar 

  29. 29.

    Meruvu, H., Vangalapati, M., Chippada, S. C., & Bammidi, S. R. (2011). Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasayan Journal of Chemistry, 4, 217–222.

    Google Scholar 

  30. 30.

    Rani, B., Bhati, I., Abid, M., & Kazmi, S. H. A. (2017). Classically eclectic therapeutic applicability of Tinospora cordifolia (Giloy/Guluchi). The Journal of Biological Chemistry Research, 34, 932–937.

    Google Scholar 

  31. 31.

    Saxena, C., & Rawat, G. (2019). Tinospora cordifolia (Giloy) - Therapeutic uses and importance: A review. Current Research in Pharmaceutical Sciences, 9, 42–45.

    Article  Google Scholar 

  32. 32.

    Mittal, J., & Sharma, M. M. (2017). Enhanced production of berberine in in vitro regenerated cell of Tinospora cordifolia and its analysis through LCMS QToF. 3 Biotech, 7, 25. https://doi.org/10.1007/s13205-016-0592-6.

    Article  Google Scholar 

  33. 33.

    Mittal, J., Sharma, M. M., & Batra, A. (2014). Tinospora cordifolia: A multipurpose medicinal plant- A review. Journal of Medicinal Plants Studies, 2, 32–47.

    Google Scholar 

  34. 34.

    Mondal, M., Hossain, M. S., Das, N., Khalipha, A. B. R., Sarkar, A. P., Islam, M. T., Smirty, S. Z., Biswas, S., & Kundu, S. K. (2019). Phytochemical screening and evaluation of pharmacological activity of leaf methanolic extract of Colocasia affinis Schott. Clinical Phytoscience, 5, 8. https://doi.org/10.1186/s40816-019-0100-8.

    Article  Google Scholar 

  35. 35.

    Masih, N., & Singh, B. (2012). Phytochemical screening of some plants used in herbal based cosmetic preparations. In L. Khemani, M. Srivastava, & S. Srivastava (Eds.), Chemistry of Phytopotentials: Health, energy and environmental perspectives. Berlin, Heidelberg: Springer.

    Google Scholar 

  36. 36.

    Bagyalakshmi, B., Nivedhitha, P., & Balamurugan, A. (2019). Studies on phytochemical analysis, antioxidant and antibacterial activity of Ficus racemosa L. leaf and fruit extracts against wound pathogens. Vegetos, 32, 58–63. https://doi.org/10.1007/s42535-019-00007-6.

    Article  Google Scholar 

  37. 37.

    Gacem, M. A., Telli, A., Gacem, H., & Ould-El-Hadj-Khelil, A. (2019). Phytochemical screening, antifungal and antioxidant activities of three medicinal plants from Algerian steppe and Sahara (preliminary screening studies). SN Applied Sciences, 1, 1721. https://doi.org/10.1007/s42452-019-1797-1.

    Article  Google Scholar 

  38. 38.

    Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9, 479–489.

    Article  Google Scholar 

  39. 39.

    Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7, 219–242.

    Article  Google Scholar 

  40. 40.

    Sonal, S., Gupta, Y., & Prabha, S. S. K. (2019). Comparative analysis of phytochemicals of healthy and symptomatic Clerodendrum inerme. In R. Kundu & R. Narula (Eds.), Advances in Plant & Microbial Biotechnology. Singapore: Springer.

    Google Scholar 

  41. 41.

    Akter, M. T., Huda, M. K., Hoque, M. M., & Rahman, M. (2020). Phytochemical analysis, antioxidant and anti-inflammatory activity of Eria tomentosa (Koen.) hook. F. In S. Khasim, S. Hegde, M. González-Arnao, & K. Thammasiri (Eds.), Orchid biology: Recent Trends & Challenges. Singapore: Springer.

    Google Scholar 

  42. 42.

    Samat, N. A., & Nor, R. M. (2013). Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceramics International, 39, S545–S548.

    Article  Google Scholar 

  43. 43.

    Mohamed, A. A., Fouda, A., Abdel-Rahman, M. A., Hassan, S. E. D., El-Gamal, M. S., Salem, S. S., & Shaheen, T. I. (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatalysis and Agricultural Biotechnology, 19, 101103. https://doi.org/10.1016/j.bcab.2019.101103.

    Article  Google Scholar 

  44. 44.

    Elfeky, A. S., Salem, S. S., Elzaref, A. S., Owda, M. E., Eladawy, H. A., Saeed, A. M., Awad, M. A., Abou-Zeid, R. E., & Fouda, A. (2020). Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydrate Polymers, 230, 115711. https://doi.org/10.1016/j.carbpol.2019.115711.

    Article  Google Scholar 

  45. 45.

    Mohamed, A. A., Fouda, A., Elgamal, M. S., Hassan, S. E. D., Shaheen, T. I., & Salem, S. S. (2017). Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new egyptian strain Fusarium Keratoplasticum A1-3. Egyptian Journal of Chemistry. https://doi.org/10.21608/EJCHEM.2017.1626.1137.

  46. 46.

    Muneer, S., Memon, S., Pahnwar, Q. K., Bhatti, A. A., & Khokar, T. S. (2017). Synthesis and investigation of antimicrobial properties of pyrrolidine appended calix[4]arene. Journal of Analytical Science and Technology, 8, 3. https://doi.org/10.1186/s40543-017-0111-3.

    Article  Google Scholar 

  47. 47.

    Sardarodiyan, M., Arianfar, A., Sani, A. M., & Naji-Tabasi, S. (2019). Antioxidant and antimicrobial activities of water-soluble polysaccharide isolated from Balangu seed (Lallemantia royleana) gum. Journal of Analytical Science and Technology, 10, 17. https://doi.org/10.1186/s40543-019-0174-4.

    Article  Google Scholar 

  48. 48.

    Desbois, A. P., & Smith, V. J. (2015). Disk diffusion assay to assess the antimicrobial activity of marine algal extracts. In D. Stengel & S. Connan (Eds.), Natural products from marine algae. Methods in Molecular Biology. New York, NY: Humana Press.

    Google Scholar 

  49. 49.

    Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650.

    Article  Google Scholar 

  50. 50.

    Virkutyte, J., & Varma, R. S. (2011). Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science, 2, 837–846.

    Article  Google Scholar 

  51. 51.

    Annu, A. A., & Ahmed, S. (2018). Green synthesis of metal, metal oxide nanoparticles, and their various applications. In L. Martínez, O. Kharissova, & B. Kharisov (Eds.), Handbook of Ecomaterials. Cham: Springer.

    Google Scholar 

  52. 52.

    Md Ishak, N. A. I., Kamarudin, S. K., & Timmiati, S. N. (2019). Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Materials Research Express, 6. https://doi.org/10.1088/2053-1591/ab4458.

  53. 53.

    Ogunyemi, S. O., Abdallah, Y., Zhang, M., Fouad, H., Hong, X., Ibrahim, E., Masum, M. M. I., Hossain, A., Mo, J., & Li, B. (2019). Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artificial Cells, Nanomedicine, and Biotechnology, 47, 341–352. https://doi.org/10.1080/21691401.2018.1557671.

    Article  Google Scholar 

  54. 54.

    Wang, J., Yin, W., He, X., Wang, Q., Guo, M., & Chen, S. (2016). Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis. Scientific Reports, 6, 35020. https://doi.org/10.1038/srep35020.

    Article  Google Scholar 

  55. 55.

    Wang, Y. Q., & Sayre, G. (2009). Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability. Surface and Coating Technology, 203, 2186–2192.

    Article  Google Scholar 

  56. 56.

    He, G., Wu, Y., Zhang, Y., Zhu, Y., Liu, Y., Li, N., Li, M., Zheng, G., He, B., Yin, Q., Zheng, Y., & Mao, C. (2015). Addition of Zn to the ternary Mg–Ca–Sr alloys significantly improves their antibacterial properties. Journal of Materials Chemistry B, 3, 6676–6689.

    Article  Google Scholar 

  57. 57.

    Rani, S., Verma, S., & Kumar, S. (2017). Tailoring the structural and optical parameters of zirconia nanoparticles via silver. Applied Physics A: Materials Science & Processing, 123, 539. https://doi.org/10.1007/s00339-017-1148-2.

    Article  Google Scholar 

  58. 58.

    Agarwal, H., Menon, S., Kumar, S. V., & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286, 60–70.

    Article  Google Scholar 

  59. 59.

    Qidwai, A., Pandey, A., Kumar, R., Shukla, S. K., & Dikshit, A. (2018). Advances in biogenic nanoparticles and the mechanisms of antimicrobial effects. Indian Journal of Pharmaceutical Sciences, 80, 592–603.

    Article  Google Scholar 

  60. 60.

    Maqbool, Q. (2017). Green-synthesised cerium oxide nanostructures (CeO2-NS) show excellent biocompatibility for phyto-cultures as compared to silver nanostructures (Ag-NS). RSC Advances, 7, 56575–56585.

    Article  Google Scholar 

  61. 61.

    Stankic, S., Suman, S., Haque, F., & Vidic, J. (2016). Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. Journal of Nanbiotechnology, 14, 73. https://doi.org/10.1186/s12951-016-0225-6.

    Article  Google Scholar 

  62. 62.

    Huh, A. J., & Kwon, Y. J. (2011). Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156, 128–145.

    Article  Google Scholar 

  63. 63.

    Gupta, V., & Chandra, N. (2020). Biosynthesis and antibacterial activity of metal oxide nanoparticles using Brassica oleracea subsp. botrytis (L.) leaves, an agricultural waste. The Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences. https://doi.org/10.1007/s40011-020-01184-0.

  64. 64.

    Ijaz, M., Zafar, M., Islam, A., Afsin, S., & Iqbal, T. A. (2020). Review on antibacterial properties of biologically synthesized zinc oxide nanostructures. Journal of Inorganic and Organometallic Polymers. https://doi.org/10.1007/s10904-020-01603-9.

  65. 65.

    Bhuvaneshwari, V., Vaidehi, D., & Logpriya, S. (2018). Green synthesis of copper oxide nanoparticles for biological applications. Microbiology Current Research, 2, 5–6.

    Google Scholar 

  66. 66.

    Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., & Yaminsky, I. V. (2014). Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44.

    Article  Google Scholar 

  67. 67.

    Fouda, A., Hassan, S. E. D., Salem, S. S., & Shaheen, T. I. (2018). In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252–261. https://doi.org/10.1016/j.micpath.2018.09.030.

    Article  Google Scholar 

  68. 68.

    Alsharif, S. M., Salem, S. S., Abdel-Rahman, M. A., Fouda, A., Eid, A. M., Hassan, S. E. D., Awad, M. A., & Mohamed, A. A. (2020). Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03943.

  69. 69.

    Salem, S. S., Fouda, M. M. G., Fouda, A., Awad, M. A., Al-Olayan, E. M., Allam, A. A., & Shaheen, T. I. (2020). Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. Journal of Cluster Science. https://doi.org/10.1007/s10876-020-01794-8.

Download references

Acknowledgements

We are thankful to Department of Chemistry, Uttaranchal University, Dehradun, India, for providing all basic facilities during the experimental work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naveen Chandra Joshi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Research Involving Human and Animal Statement

We declare that the present study does not involve any human and animal subjects.

Informed Consent and Funding Statement

In this work, all experimental data, diagrams and other contents are pure and experimental based and not from any manuscript, thesis, books and any online available materials. The experimental and characterisation work was financially assisted by Department of Chemistry, Uttaranchal University Dehradun (India).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joshi, N.C., Chaudhary, N. & Rai, N. Medicinal Plant Leaves Extract Based Synthesis, Characterisations and Antimicrobial Activities of ZrO2 Nanoparticles (ZrO2 NPs). BioNanoSci. (2021). https://doi.org/10.1007/s12668-021-00829-2

Download citation

Keywords

  • ZrO2 NPs
  • Tinospora cordifolia
  • Phytochemical test
  • Characterisations
  • Antimicrobial activity