Skip to main content

Advertisement

Log in

Antimicrobial, Antioxidant, and Antiviral Activities of Biosynthesized Silver Nanoparticles by Phycobiliprotein Crude Extract of the Cyanobacteria Spirulina platensis and Nostoc linckia

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present work was designed for the biosynthesis of silver nanoparticles (AgNPs) by Spirulina platensis and Nostoc linckia phycobiliprotein extract and for evaluation of their antimicrobial, antioxidant, and antiviral activities. The biosynthesized AgNPs were characterized by UV-Vis spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, X-ray diffraction analysis, and Zeta potential analysis. The antimicrobial activity of the biosynthesized AgNPs was tested by the disk diffusion method. The antioxidant activity of the nanoparticles was assessed by using DPPH radical scavenging, total antioxidant capacity, and ferric reducing antioxidant assays. The antiviral activity of AgNPs was also challenged with the hepatitis C virus (HCV). The appearance of the surface plasmon resonance band at 420 nm indicated the biosynthesis of AgNPs. TEM images revealed that AgNPs had a mean average size of 21.211 and 21.052 nm for S. platensis and N. linckia, respectively. XRD analysis confirmed its spherical crystalline shape, and FTIR analysis suggested that proteins were responsible for their capping and stabilization. Zeta potential recorded − 15.902 mV and − 16.811 mV for S. platensis and N. linckia AgNPs, respectively, confirming its stability. AgNPs showed potent antimicrobial activity against some bacterial pathogens and Candida albicans. The antioxidant activity of AgNPs was evident by the use of three antioxidant assays. Significant antiviral activity against HCV (64.976%) was recorded for AgNPs of N. linckia, compared with Ribavirin (66.673%) as a standard drug, while S. platensis AgNPs recorded 48.334%. In conclusion, AgNPs biosynthesized from cyanobacterial phycobiliproteins were stable and showed potent antimicrobial, antioxidant, and antiviral activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517.

    Google Scholar 

  2. Ismail, G. A., Allam, N. G., El-Gemizy, W. M., & Salem, M. A. (2020). The role of silver nanoparticles biosynthesized by Anabaena variabilis and Spirulina platensis cyanobacteria for malachite green removal from wastewater. Environmental Technology. https://doi.org/10.1080/09593330.2020.1766576.

  3. Naz, M., Nasiri, N., Ikram, M., Nafees, M., Qureshi, M. Z., & Ali, S. (2017). Eco-friendly biosynthesis, anticancer drug loading and cytotoxic effect of capped Ag-nanoparticles against breast cancer. Applied Nanoscience, 7, 793–802.

    Google Scholar 

  4. Vedelago, J., Gomez, C. G., Valente, M., & Mattea, F. (2018). Green synthesis of silver nanoparticles aimed at improving theranostics. Radiation Physics and Chemistry, 146, 55–67.

    Google Scholar 

  5. Lakshmanan, G., Sathiyaseelan, A., Kalaichelvan, P. T., & Murugesan, K. (2018). Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L., assessment of their antibacterial and anticancer activity. Karbala Int J Modern Sci, 4, 61–68.

    Google Scholar 

  6. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications, a green expertise. Journal of Advanced Research, 7, 17–28.

    Google Scholar 

  7. Balasooriya, E. R., Jayasinghe, C. D., Jayawardena, U. A., Ruwanthika, R. W. D., Mendis de Silva, R., & Udagama, R. V. (2017). Honey mediated green synthesis of nanoparticles, New era of safe nanotechnology. J Nanomedicin 10 pages.

  8. Lee, S. H., & Jun, B. H. (2019). Silver nanoparticles, synthesis and application for nanomedicine. Intl J Molocular Sci, 20, 865–885.

    Google Scholar 

  9. Ahmed, E. A., Abdel-Hafez, E. H., Ismail, A. F. M., Elsonbaty, S. M., Abbas, H. S., & Salah El-Din, R. A. (2015). Biosynthesis of silver nanoparticles by Spirulina platensis and Nostoc sp. Global Advanced Res J Microbiol, 4(4), 36–49.

    Google Scholar 

  10. El-Sheekh, M. M., & El-Kassas, H. Y. (2016). Algal production of nano-silver and gold, their antimicrobial and cytotoxic activities, a review. Journal, Genetic Engineering & Biotechnology, 14, 299–310.

    Google Scholar 

  11. Yilma, B., & Mitiku, A. A. (2017). Antibacterial and antioxidant activity of silver nanoparticles synthesized using aqueous extract of Moringa stenopetala leaves. African Journal of Biotechnology, 16(32), 1705–1716.

    Google Scholar 

  12. Gaikwad, S., Ingle, A., & Gade, A. (2013). Antiviral activity of myco-synthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine, 8, 4303–4314.

    Google Scholar 

  13. Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., & Xing, M. M. Q. (2014). Nanosilver particles in medical applications, synthesis, performance and toxicity. International Journal of Nanomedicine, 9, 2399–2407.

    Google Scholar 

  14. Singh, L., Kruger, H. G., Glenn, E., Maguire, M., Govender, T., & Parboosing, R. (2017). The role of nanotechnology in the treatment of viral infections. Therapeut Adv Infectious Diseases, 4(4), 105–130.

    Google Scholar 

  15. El-Naggar, N. E., Hussein, M. H., & El-Sawah, A. A. (2018). Phycobiliprotein-mediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. J Sci Rep, 8, 89–97.

    Google Scholar 

  16. Phull, A. R., Abbas, Q., Ali, A., Raza, H., Kim, S. J., Zia, M., & Haq, I. (2016). Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Faseb J Phycol Sci, 2(1), 31–36.

    Google Scholar 

  17. Madhanraj, R., Eyini, M., & Balaji, P. (2017). Antioxidant assay of gold and silver nanoparticles from edible Basidiomycetes mushroom fungi. Free Radicals and Antioxidants, 7(2), 137–142.

    Google Scholar 

  18. Lara, H. H., Garza-Trevino, E. N., & Ixtepan-Turrent, L. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanbiotechnology, 9, 15–30.

    Google Scholar 

  19. Baskaran, X., Zhang, S., Vigila, A. V. G., Parimelazhagan, T., & Muralidhara-Rao, D. (2016). Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early Tracheophyte, Pteris tripartite Sw. International Journal of Nanomedicine, 11, 5789–5806.

    Google Scholar 

  20. Lara, H. H., Ayala-Nunez, N. V., Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanbiotechnology, 8, 31–55.

    Google Scholar 

  21. Kailasa, S. K., Park, T. J., Rohit, J. V., & Koduru, J. R. (2019). Antimicrobial activity of silver nanoparticles. In Nanoparticles in pharmacotherapy (pp. 461–484). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  22. Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences, 20, 449.

    Google Scholar 

  23. Ferdous, Z., & Nemmar, A. (2020). Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21(7), 2375. Published 2020 Mar 30. https://doi.org/10.3390/ijms21072375.

    Article  Google Scholar 

  24. Patra, J., Patra, A., Mahapatra, N., Thatoi, H., Das, S., & Sahu, R. (2009). Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa, India. Malays. Journal of Microbiology, 5, 128–131.

    Google Scholar 

  25. Salehi, S., Shandiz, S. A. S., Ghanbar, F., Darvish, M. R., Ardestani, M. S., Mirzaie, A., & Jafari, M. (2016). Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer and antibacterial properties. International Journal of Nanomedicine, 11, 1835–1846.

    Google Scholar 

  26. Singh, R., Parihar, P., Singh, M., Bajguz, A., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2017). Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine, status and future prospects. Frontiers in Microbiology, 8, 5–15.

    Google Scholar 

  27. Singh, S., Kate, B. N., & Banerjee, U. (2005). Bioactive compounds from cyanobacteria and microalgae, an overview. Critical Reviews in Biotechnology, 25, 73–95.

    Google Scholar 

  28. Liu, Y. F., Xu, L. Z., & Chen, N. (2000). Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. Journal of Applied Phycology, 12(2), 125.

    Google Scholar 

  29. Liu, Y. F., Xu, L. Z., & Zhang, C. W. (2000). The inhibition of phycocyanin from Porphyra haitanensis on the on the growth of human leukemia HL-60 cells. Chinese Journal of Marine Drugs, 19(1), 1–20.

    Google Scholar 

  30. Kim, T. H., Pham, X. H., Rho, W. Y., Kim, H. M., Hahm, E., Ha, Y., Son, B. S., Lee, S. H., & Jun, B. H. (2018). Ag and Ag-Au introduced silica-coated magnetic beads. B Korean Chem Social, 39, 250–256.

    Google Scholar 

  31. Zarrouk, C. (1966). Contribution à l’étude d’une cyanophycée. Influence de divers’ facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. (Setch et Gardner) Geitler. Ph.D. Thesis, Université de Paris, Paris, France.

  32. Rippka R, Deruelles J, Waterbury J, Herdman M, & Stanier R. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Genetic Microbiol 111, 1–61.

  33. Stainer, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews, 35, 171–205.

    Google Scholar 

  34. Jena, J., Pradhan, N., & Dash, B. P. (2013). Biosynthesis and characterization of silver nanoparticles using microalgae Chlorococcum humicola and its antibacterial activity. Int J Nanomater Biostructures, 3, 1–8.

    Google Scholar 

  35. Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58, 419–435.

    Google Scholar 

  36. El-Sheekh, M. M., & El-Kassas, H. Y. (2014). Application of biosynthesized silver nanoparticles against a cancer promoter cyanobacterium, Microcystis aeruginosa. Asian Pacific Journal of Cancer Prevention, 15, 6773–6779.

    Google Scholar 

  37. Manual, O. (1981). The oxoid manual of culture media ingredients and other laboratory servies (5th ed.). UK: Oxoid Manual.

    Google Scholar 

  38. CLSI. (2010). Performance standards for antimicrobial susceptibility testing, Twentieth Informational Supplement, CLSI Document M100S20 (Vol. 2010). Wayne, PA: Clinical and Laboratory Standards Institute.

  39. Blois, M. S. (1958). Antioxidants determination by the use of a free radical. Natural med, 26, 1199–1200.

    Google Scholar 

  40. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitative of antioxidant capacity through the formation of a phosphomolybdenum complex, specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.

    Google Scholar 

  41. Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22, 296–302.

    Google Scholar 

  42. Posada, D., & Crandal, K. A. (1998). Model test, testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    Google Scholar 

  43. Koch, K. (2004). Antivirale effekte ausgewahlter ole auf behullte viren unter besondereer Berucksichtigung des Herpes simplex Virus Type 1 and 2. Ph. D. Thesis. University of Heidelberg.

  44. Lohr, D., Venkov, P., & Zlatanova, J. (1995). Transcriptional regulation in the yeast Gal gene family. A complex genetic network. Faseb. Journal., 9, 777–787.

    Google Scholar 

  45. Komurian-Pradel, F., Paranhose-Baccalà, G., Sodoyer, M., Chevallier, P., Mandrand, B., Lotteu, V., & Andre, P. (2001). Quantitation of HCV RNA using real-time PCR anf fluorimetry. Journal of Virological Methods, 95(1–2), 111–119. https://doi.org/10.1016/s0166-0934(01)00300-7.

    Article  Google Scholar 

  46. SPSS. (2006). SPSS base 15.0. Chicago, USA: Users guide SPSS inc..

    Google Scholar 

  47. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles, green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83–96.

    Google Scholar 

  48. Mubarak-Ali, D. M., Gopinath, V., Rameshbabu, N., & Thajuddin, N. (2012). Synthesis and characterization of Cd-S nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Letter Nature, 74, 8–11.

    Google Scholar 

  49. Patel, V., Berthold, D., Purannik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Report, 5, 112–119.

    Google Scholar 

  50. Fathima, S. R., Vadivel, A., Samuthira, N., & Mirunalini, S. (2013). Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pacific Journal of Tropical Medicine, 6(1), 1–10.

    Google Scholar 

  51. Umoren, S. A., Obot, I. B., & Gazem, Z. M. (2014). Green synthesis and characterization of silver nanoparticles using red apple (Malus demostica) fruit extract at room temperature. J Mater Environ Sci, 5, 907–914.

    Google Scholar 

  52. Theivasanthi, T., & Alagar, M. (2013). Konjac biomolecules assisted- rod/spherical shaped lead nano powder synthesized by electrolytic process and characterization studies. Nanotechnol Biomed Engin, 5, 11–19.

    Google Scholar 

  53. Shivaji, S., Madhu, S., & Singh, S. (2011). Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Processed Biochem, 49, 830–837.

    Google Scholar 

  54. Emam, M., El Raey, M. A., Eisa, W. H., El-Haddad, A. E., Osman, S. M., El-Ansari, M. A., & Rabie, A. G. (2017). Green synthesis of silver nanoparticles from Caesalpinia gilliesii (Hook) leaves, antimicrobial activity and in vitro cytotoxic effect against BJ-1 and MCF-7 cells. J Appl Pharmaceut Sci, 7, 226–233.

    Google Scholar 

  55. Malheiros, P. S., Micheletto, Y. M. S., Silveira, N. P., & Brandelli, A. (2010). Development and characterization of phosphatidyl choline nano vesicles containing the antimicrobial peptide Nisin. Food Research International, 43(4), 1198–1203.

    Google Scholar 

  56. Aiad, M. A., Moursi, E. A., El-Dissoky, R. A., & Amer, M. M. (2014). Response of maize crop to irrigation under different rates and dose of nitrogen fertilization in the North Nile Delta region. J Soil Sci Agricul Engin Mansoura Univ, 5, 97–113.

    Google Scholar 

  57. Tang, S., & Zheng, J. (2018). Antibacterial activity of silver nanoparticles, structural effects. Advanced Healthcare Materials, 7, 170–1503.

    Google Scholar 

  58. Long, Y. M., Hu, L. G., Yan, X. T., Zhao, X. C., Zhou, Q. F., Cai, Y., & Jiang, G.-B. (2017). Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. International Journal of Nanomedicine, 12, 3193.

    Google Scholar 

  59. Kumar, S., Shukla, A., Baul, P. P., Mitra, A., & Halder, D. (2018). Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Science & Nutrition, 16, 178–184.

    Google Scholar 

  60. Lee, H. Y., Choi, Y. J., Jung, E. J., Yin, H. Q., Kwon, J. T., & Kim, J. E. (2010). Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. Journal of Nanoparticle Research, 12, 15–67.

    Google Scholar 

  61. Xiu, Z. M., Ma, J., & Alvarez, P. J. J. (2011). Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environmental Science & Technology, 45, 9003–9008.

    Google Scholar 

  62. Hayashi, K., Hayashi, T., & Morita, N. (1993). How an extract from Spirulina platensis is a selective inhibitor of herpes simplex virus type 1 penetration into HeLa cells. Phototherapy Res, 7, 76–80.

    Google Scholar 

  63. Recordati, C., De Maglie, M., Bianchessi, S., Argentiere, S., Cella, C., Mattiello, S., Cubadda, F., Aureli, F., D’Amato, M., & Raggi, A. (2016). Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Particle and Fibre Toxicology, 13, 12.

    Google Scholar 

  64. Sun, R. W. Y., Chen, R., Chung, N. P. Y., Ho, C. M., Lin, C. L. S., & Che, C. M. (2005). Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications, 6, 5059–5061.

    Google Scholar 

  65. El-Sheekh, M. M., Shabaan, M. T., Hassan, L., & Morsi, H. H. (2020). Antiviral activity of algae biosynthesized silver and gold nanoparticles against herps simplex (HSV-1) virus in vitro using cell-line culture technique. International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2020.1789946.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. El-Sheekh.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Research Involving Humans and Animals Statement

Not Applicable.

Informed Consent

Not Applicable.

Funding

No Funding.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, G.A., El-Sheekh, M.M., Samy, R.M. et al. Antimicrobial, Antioxidant, and Antiviral Activities of Biosynthesized Silver Nanoparticles by Phycobiliprotein Crude Extract of the Cyanobacteria Spirulina platensis and Nostoc linckia. BioNanoSci. 11, 355–370 (2021). https://doi.org/10.1007/s12668-021-00828-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00828-3

Keywords

Navigation