Mucoadhesive Micro-/Nano Carriers in Ophthalmic Drug Delivery: an Overview

Abstract

The eye is a challenging organ for ophthalmic drug delivery due to the barriers associated with the anterior and posterior segments like nasolacrimal drainage, blinking, induced lacrimation, impermeability of corneal epithelial membrane, and blood-ocular barrier. Although there are conventional approaches, such as eye drop, ointment, suspension, implants, and injection, they suffer from limitations of low bioavailability, poor patient compliance (due to invasive approach and repeated dosing), and potential for several side effects. This review explored the various mucoadhesive polymers, derivatized polymers, and different modification methods for such polymer derivatization (via carboxymethylation, thiolation, and quaternization) for their effective drug delivery toward ophthalmic application. Various types of micro and nanoparticulate systems of such derivatized mucoadhesive polymer-based carriers have been also exemplified and discussed here for their improved medicinal efficacy. To address the issues associated with conventional ophthalmic formulations, mucoadhesive drug delivery has been proposed. The emerging technologies play an important role in the development of more efficient mucoadhesive carriers obtained by derivatization or modification of core polymers with various functional groups such as carboxymethyl, amine, and new generation thiols. Mucoadhesive polymers form bonding with mucin (hydrogen, covalent, electrostatic bonding, etc.) and enhance corneal residence time and cellular uptake of the drug. Mucoadhesive carriers are designed to associate with the micro and nanoparticulate systems to overcome the ocular barriers with improved therapeutic efficacy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Khare, A., Grover, K., Pawar, P., & Singh, I. (2014). Mucoadhesive polymers for enhancing retention in ocular drug delivery: a critical. Reviews of Adhesion and Adhesives, 2, 467–468.

    Google Scholar 

  2. 2.

    Bourlais, L., Acar, L., Zia, H., Sado, P., Needham, T., & Leverg, R. (1998). Ophthalmic drug delivery systems—recent advances. Progress in Retinal and Eye Research, 17, 33–58.

    Google Scholar 

  3. 3.

    Kalepu, S., & Nekkanti, V. (2015). Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharmaceutica Sinica B, 5, 1–12.

    Google Scholar 

  4. 4.

    Nagarwal, R., Singh, P., Kant, S., Maiti, P., & Pandit, J. (2010). Chitosan coated PLA nanoparticles for ophthalmic delivery: characterization, in-vitro and in-vivo study in rabbit eye. Journal of Biomedical Nanotechnology, 6, 648–657. https://doi.org/10.1166/jbn.2010.1168.

    Article  Google Scholar 

  5. 5.

    Ige, P. P., Pardeshi, S. R., & Sonawane, R. O. (2018). Development of pH-dependent nanospheres for nebulisation—in vitro diffusion, aerodynamic and cytotoxicity studies. Drug Research (Stuttg), 68, 680–686.

    Google Scholar 

  6. 6.

    Shastri, D. (2017). Thiolated chitosan: a boon to ocular delivery of therapeutics. MOJ Bioequivalence & Bioavailability, 3, 34–37.

    Google Scholar 

  7. 7.

    Zahir-Jouzdani, F., Wolf, J., Atyabi, F., & Bernkop-Schnürch, A. (2018). In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opinion on Drug Delivery, 15, 1007–1019.

    Google Scholar 

  8. 8.

    Davies, N., Fair, S., Hadgraft, J., & Kellaway, I. (1991). Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharmaceutical Research, an official journal of The American Association of Pharmaceutical Scientists, 8, 1039–1043.

    Google Scholar 

  9. 9.

    Kaur, I., & Smitha, R. (2002). Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Development and Industrial Pharmacy, 28, 353–369.

    Google Scholar 

  10. 10.

    Sosnik, A., Neves, J., & Sarmento, B. (2014). Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Progress in Polymer Science, 39, 2030–2075.

    Google Scholar 

  11. 11.

    Mansuri, S., Kesharwani, P., Jain, K., Tekade, R., & Jain, N. (2016). Mucoadhesion: a promising approach in drug delivery system. Reactive and Functional Polymers, 100, 151–172.

    Google Scholar 

  12. 12.

    Saraswathi, B., Balaji, A., & Umashankar, M. (2013). Polymers in mucoadhesive drug delivery system-latest updates. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 423–430.

    Google Scholar 

  13. 13.

    Kharenko, E., Larionova, N., & Demina, N. (2009). Mucoadhesive drug delivery systems (review). Pharmaceutical Chemistry Journal, 43, 200–208.

    Google Scholar 

  14. 14.

    Chaiyasan, W., Praputbut, S., Kompella, U., Srinivas, S., & Tiyaboonchai, W. (2017). Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea. Colloids Surfaces B Biointerfaces, 149, 288–296.

    Google Scholar 

  15. 15.

    Chhonker, Y., Prasad, Y., Chandasana, H., Vishvkarma, A., Mitra, K., Shukla, P., & Bhatta, R. (2015). Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. International Journal of Biological Macromolecules, 72, 1451–1458.

    Google Scholar 

  16. 16.

    Khutoryanskaya, O., Morrison, P., Seilkhanov, S., Mussin, M., Ozhmukhametova, E., Rakhypbekov, T., & Khutoryanskiy, V. (2014). Hydrogen-bonded complexes and blends of poly(acrylic acid) and methylcellulose: nanoparticles and mucoadhesive films for ocular delivery of riboflavin. Macromolecular Bioscience, 14, 225–234.

    Google Scholar 

  17. 17.

    Calixto, G., Yoshii, A., Silva, H., Cury, B., & Chorilli, M. (2015). Polyacrylic acid polymers hydrogels intended to topical drug delivery: preparation and characterization. Pharmaceutical Development and Technology, 20, 490–496.

    Google Scholar 

  18. 18.

    Horvát, G., Gyarmati, B., Berkó, S., Szabó-Révész, P., Szilágyi, B., Szilágyi, A., Soós, J., Sandri, G., Bonferoni, R. S., Ferrari, F., Caramella, C., Csányi, E., & Budai-Szucs, M. (2015). Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. European Journal of Pharmaceutical Sciences, 67, 1–11.

    Google Scholar 

  19. 19.

    Shen, J., Wang, Y., Ping, Q., Xiao, Y., & Huang, X. (2009). Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. Journal of Controlled Release, 137, 217–223.

    Google Scholar 

  20. 20.

    Daniella, A., & Andreia, A. (2018). Synthesis and applications of amphiphilic chitosan derivatives for drug delivery applications. In S. R. A. R. Neves (Ed.), Nanoparticles in life sciences and biomedicine (1st ed.). New York: Pan Stanford.

    Google Scholar 

  21. 21.

    Ahuja, M., Singh, S., & Kumar, A. (2013). Evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. nternational Journal of Biological Macromolecules, 53, 114–121.

    Google Scholar 

  22. 22.

    Rana, V., Kamboj, S., & Singh, K. (2016). Derivatized polysaccharides: a potential in micro/nanoparticulate based drug delivery. In Y. E. C. V. Pillay (Ed.), Frontiers in biomaterials unfolding the biopolymer landscape (pp. 411–413). Bentham Science.

  23. 23.

    Rana, V., Kamboj, S., Sharma, R., & Singh, K. (2015). Modification of gums: synthesis techniques and pharmaceutical benefits. In V. Thakur & M. Thakur (Eds.), Handbook of polymers for pharmaceutical technologies: biodegradable polymers (pp. 302–307). Scrivener Publishing LLC. https://doi.org/10.1002/9781119041450.ch10.

  24. 24.

    Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., & Yc, D. (2006). Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 63, 367–374.

    Google Scholar 

  25. 25.

    Başaran, E., & Yazan, Y. (2012). Ocular application of chitosan. Expert Opinion on Drug Delivery, 9, 701–712.

    Google Scholar 

  26. 26.

    An, N., Thien, D., Dong, N., & Dung, P. (2009). Water-soluble N-carboxymethylchitosan derivatives: preparation, characteristics and its application. Carbohydrate Polymers, 75, 489–497.

    Google Scholar 

  27. 27.

    Logithkumar, R., Keshavnarayan, A., Dhivya, S., Chawla, A., Saravanan, S., & Selvamurugan, N. (2016). A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, 151, 172–188.

    Google Scholar 

  28. 28.

    Bukzem, A., Signini, R., Santos, D., Lião, L., & Ascheri, D. (2016). Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. International Journal of Biological Macromolecules, 85, 615–624.

    Google Scholar 

  29. 29.

    Shariatinia, Z. (2018). Carboxymethyl chitosan: properties and biomedical applications. International Journal of Biological Macromolecules, 120, 1406–1419.

    Google Scholar 

  30. 30.

    Colo, G., Zambito, Y., Burgalassi, S., Nardini, I., & Saettone, M. (2004). Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. International Journal of Pharmaceutics, 273, 37–44.

    Google Scholar 

  31. 31.

    Shinde, U., Ahmed, M., Singh, K., Shinde, U., Ahmed, M., & Singh, K. (2013). Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for open angle glaucoma. Journal of Drug Delivery. https://doi.org/10.1155/2013/562727.

  32. 32.

    Yang, L., Lan, Y., Guo, H., Cheng, L., Fan, J., Cai, X., Zhang, L., Chen, R., & Zhou, H. (2010). Ophthalmic drug loaded N, O-carboxymethyl chitosan hydrogels: synthesis, in vitro and in vivo evaluation. Acta Pharmacologica Sinica, 31, 1625–1634.

    Google Scholar 

  33. 33.

    Wang, Y., Zhou, L., Fang, L., & Cao, F. (2020). Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2020.01.008.

  34. 34.

    Xu, W., Liu, K., Li, T., Zhang, W., Dong, Y., Lv, J., Wang, W., Sun, J., Li, M., Wang, M., Zhao, Z., & Liang, Y. (2019). An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn. Journal of Biomedical Materials Research Part A., 107, 742–754.

    Google Scholar 

  35. 35.

    Yu, S., Li, Q., Li, Y., Wang, H., Liu, D., Yang, X., & Pan, W. (2017). A novel hydrogel with dual temperature and pH responsiveness based on a nanostructured lipid carrier as an ophthalmic delivery system: enhanced trans-corneal permeability and bioavailability of nepafenac. New Journal of Chemistry., 41, 3920–3929.

    Google Scholar 

  36. 36.

    Kaur, H., Ahuja, M., Kumar, S., & Dilbaghi, N. (2012). Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery. International Journal of Biological Macromolecules, 50, 833–839.

    Google Scholar 

  37. 37.

    Mahajan, H., Tyagi, V., Patil, R., & Dusunge, S. (2013). Thiolated xyloglucan: synthesis, characterization and evaluation as mucoadhesive in situ gelling agent. Carbohydrate Polymers, 91, 618–625.

    Google Scholar 

  38. 38.

    Goyal, P., & Kumar, V. (2007). Carboxymethylation of tamarind kernel powder. Carbohydrate Polymers, 69, 251–255.

    Google Scholar 

  39. 39.

    Dasankoppa, F., Kujur, S., Sholapur, H., & Jamakandi, V. (2016). Design, formulation and evaluation of carboxymethyl tamarind based in situ gelling ophthalmic drug delivery system of dorzolamide hydrochloride. Indian Journal of Health Sciences. https://doi.org/10.4103/2349-5006.183688.

  40. 40.

    Dilbaghi, N., Kaur, H., Ahuja, M., Arora, P., & Kumar, S. (2014). Synthesis and evaluation of ciprofloxacin-loaded carboxymethyl tamarind kernel polysaccharide nanoparticles. Journal of Experimental Nanoscience, 9, 1015–1025. https://doi.org/10.1080/17458080.2013.771244.

    Article  Google Scholar 

  41. 41.

    Vinod, V., Sashidhar, R., Sarma, V., & Saradhi, V. (2008). Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): a tree gum from India. Journal of Agricultural and Food Chemistry, 56, 2199–2207.

    Google Scholar 

  42. 42.

    Sashidhar, R. B., Raju, D., & Karuna, R. (2014). Tree gum: gum kondagogu. In K. Ramawat & J. M. Mérillon (Eds.), Polysaccharides (pp. 190–196). Cham: Springer.

    Google Scholar 

  43. 43.

    Janaki, B., & Sashidhar, R. (1998). Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): a potential food additive. Food Chemistry, 61, 231–236. https://doi.org/10.1016/S0308-8146(97)00089-7.

    Article  Google Scholar 

  44. 44.

    Kora, A., Sashidhar, R., & Arunachalam, J. (2010). Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Polymers, 82, 670–679.

    Google Scholar 

  45. 45.

    Kumar, A., & Ahuja, M. (2013). Carboxymethyl gum kondagogu-chitosan polyelectrolyte complex nanoparticles: preparation and characterization. International Journal of Biological Macromolecules, 62, 80–84.

    Google Scholar 

  46. 46.

    Vegi, G., Sistla, R., Srinivasan, P., Beedu, S., Khar, R., & Diwan, P. (2009). Emulsifying properties of gum kondagogu (cochlospermum gossypium), a natural biopolymer. Journal of the Science of Food and Agriculture, 89, 1271–1276.

    Google Scholar 

  47. 47.

    Kumar, A., & Ahuja, M. (2012). Carboxymethyl gum kondagogu: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydrate Polymers, 90, 637–643.

    Google Scholar 

  48. 48.

    Kumar, A., & Ahuja, M. (2014). Aqueous carboxymethyl gum kondagogu as vehicle for ocular delivery. Journal of Pharmaceutical Investigation, 44, 237–242.

    Google Scholar 

  49. 49.

    Garrett, Q., Simmons, P., Xu, S., Vehige, J., Zhao, Z., Ehrmann, K., & Willcox, M. (2007). Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Investigative Ophthalmology & Visual Science, 48, 1559–1567.

    Google Scholar 

  50. 50.

    Osma, T., Froelich, A., & Tasarek, S. (2014). Application of gellan gum in pharmacy and medicine. International Journal of Pharmaceutics. https://doi.org/10.1016/j.ijpharm.2014.03.038.

  51. 51.

    Luo, S., Lee, H., Mann, B., & Wirostko, B. (2016). Hyaluronan-based sustained delivery of the antibiotic besifloxacin to the eye, 2016 NCUR.

  52. 52.

    Durrie, D., Wolsey, D., Thompson, V., Assang, C., Mann, B., & Wirostko, B. (2018). Ability of a new crosslinked polymer ocular bandage gel to accelerate reepithelialisation after photorefractive keratectomy. Journal of Cataract & Refractive Surgery, 44, 369–375.

    Google Scholar 

  53. 53.

    Ahuja, M., & Bhatt, D. (2015). Carboxymethyl gum katira: synthesis, characterization and evaluation for nanoparticulate drug delivery. RSC Advances, 5, 82363–82373.

    Google Scholar 

  54. 54.

    Mittal, N., & Kaur, G. (2019). Leucaena leucocephala (Lam.) galactomannan nanoparticles: optimization and characterization for ocular delivery in glaucoma treatment. International Journal of Biological Macromolecules, 139, 1252–1262.

    Google Scholar 

  55. 55.

    Singh, R., Kaur, N., Sharma, R., & Rana, V. (2019). Investigating the potential of carboxymethyl pullulan for protecting the rabbit eye from systematically induced precorneal tear film damage. Experimental Eye Research, 184, 91–100.

    Google Scholar 

  56. 56.

    Mundada, A. (2011). Hydrogels and viscosity modifiers. In H. Chavaroche (Ed.), Updates on polymers for ocular drug delivery (1st ed., pp. 40–45). Shawbury, Shrewsbury, Shropshire: Smithers Rapra Technology.

    Google Scholar 

  57. 57.

    Leitner, V., Walker, G., & Bernkop-Schnürch, A. (2003). Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. European Journal of Pharmaceutics and Biopharmaceutics, 56, 207–214. https://doi.org/10.1016/S0939-6411(03)00061-4.

    Article  Google Scholar 

  58. 58.

    Bernkop-Schnürch, A. (2005). Thiomers: a new generation of mucoadhesive polymers B. Advanced Drug Delivery Reviews, 57, 1569–1582. https://doi.org/10.1016/j.addr.2005.07.002.

    Article  Google Scholar 

  59. 59.

    Bernkop-Schnürch, A., & Greimel, A. (2005). Thiomers: the next generation of mucoadhesive polymers. American Journal of Drug Delivery. https://doi.org/10.2165/00137696-200503030-00001.

  60. 60.

    Shah, K., Shah, S., Dilawar, N., & Khan, G. (2016). Thiomers and their potential applications in drug delivery. Expert Opinion on Drug Delivery. https://doi.org/10.1080/17425247.2016.1227787.

  61. 61.

    Zhu, X., Su, M., Tang, S., Wang, L., Liang, X., Meng, F., & Hong, Y. (2012). Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Molecular Vision, 18, 1973–1982.

    Google Scholar 

  62. 62.

    Li, J., Liu, D., Tan, G., Zhao, Z., Yang, X., & Pan, W. (2016). A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2016.03.079.

  63. 63.

    Shastri, D., Oza, P., Dodiya, H., & Shelat, P. (2017). Sustained release thiolated chitosan based nanoparticulate in situ gel for ocular delivery of prulifloxacin. Current Nanomedicine. https://doi.org/10.2174/2468187307666170104154707.

  64. 64.

    Moreno, M., Pow, P., Su, T., Tabitha, T., Nirmal, S., Radhakrishnan, K., Nirmal, J., & Quah, S. (2017). Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization., 14, 913–925. https://doi.org/10.1080/17425247.2017.1343297.

  65. 65.

    Lan, Q., Di, D., Wang, S., Zhao, Q., Gao, Y., Chang, D., & Jiang, T. (2020). Chitosan-N-acetylcysteine modified HP-β-CD inclusion complex as a potential ocular delivery system for anti-cataract drug: Quercetin. Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.jddst.2019.101407.

  66. 66.

    Fischak, C., Klaus, R., Werkmeister, R., Hohenadl, C., Prinz, M., Schmetterer, L., & Garhöfer, G. (2017). Effect of topically administered chitosan-N-acetylcysteine on corneal wound healing in a rabbit model. Journal of Ophthalmology. https://doi.org/10.1155/2017/5192924.

  67. 67.

    Palmberger, T., Laf, F., Greindl, M., & Bernkop-schnürch, A. (2015). In vivo evaluation of anionic thiolated polymers as oral delivery systems for efflux pump inhibition. International Journal of Pharmaceutics, 491, 318–322. https://doi.org/10.1016/j.ijpharm.2015.06.023.

    Article  Google Scholar 

  68. 68.

    Dicker, K., Gurski, L., Bhatt, S., Witt, R., Carson, M., & Jia, X. (2014). Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomaterialia, 10, 1558–1570. https://doi.org/10.1016/j.actbio.2013.12.019.Hyaluronan.

    Article  Google Scholar 

  69. 69.

    Xu, X., Jha, A., Harrington, D., Farach-Carson, M., & Jia, X. (2012). Hyaluronic acid-based hydrogels: from a natural polysaccharide. Soft Matter, 8, 3280–3294. https://doi.org/10.1039/C2SM06463D.Hyaluronic.

    Article  Google Scholar 

  70. 70.

    Lee, D., Lu, Q., Sommerfeld, S., Chan, A., Menon, N., Schmidt, T., Elisseeff, J., & Singh, A. (2017). Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2017.03.043.

  71. 71.

    Griesser, J., Het, G., & Bernkop-schnürch, A. (2018). Thiolated hyaluronic acid as versatile mucoadhesive polymer: from the chemistry behind to product developments—what are the capabilities? Polymers (Basel). https://doi.org/10.3390/polym10030243.

  72. 72.

    Griffith, G., Wirostko, B., Lee, H., Cornell, L., McDaniel, J., Zamora, D., & Johnson, A. (2018). Treatment of corneal chemical alkali burns with a crosslinked thiolated hyaluronic acid film. Burns., 44, 1179–1186.

    Google Scholar 

  73. 73.

    Wirostko, B., Mann, B., Williams, D., & Prestwich, G. (2014). Ophthalmic uses of a thiol-modified hyaluronan-based hydrogel. Advances in Wound Care. https://doi.org/10.1089/wound.2014.0572.

  74. 74.

    Williams, D., & Mann, B. (2013). A crosslinked HA-based hydrogel ameliorates dry eye symptoms in dogs. International Journal of Biomaterials. https://doi.org/10.1155/2013/460437.

  75. 75.

    Schnichels, S., Schneider, N., Hohenadl, C., Hurst, J., Schatz, A., Januschowski, K., & Spitzer, M. (2017). Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment. PLoS One. https://doi.org/10.1371/journal.pone.0172895.

  76. 76.

    Chen, J., Liu, W., Liu, C., Li, T., Liang, R., & Luo, S. (2014). Pectin modifications : a review. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2012.718722.

  77. 77.

    Flutto, L. (2003). Pectin. In B. Caballero (Ed.), Encyclopedia of food science and nutrition (2nd ed., pp. 4440–4449). USA: Elsevier.

    Google Scholar 

  78. 78.

    Sharma, R., & Ahuja, M. (2011). Thiolated pectin: synthesis, characterization and evaluation as a mucoadhesive polymer. Carbohydrate Polymers, 85, 658–663. https://doi.org/10.1016/j.carbpol.2011.03.034.

    Article  Google Scholar 

  79. 79.

    Majzoob, S., Atyabi, F., Dorkoosh, F., Kafedjiiski, K., Loretz, B., & Bernkop-schnürch, A. (2006). Pectin–cysteine conjugate: synthesis and in-vitro evaluation of its potential for drug delivery. Journal of Pharmacy & Pharmacognosy. https://doi.org/10.1211/jpp.58.12.0006.

  80. 80.

    Hintzen, F., Hauptstein, S., Perera, G., & Bernkop-Schnürch, A. (2013). Synthesis and in vitro characterization of entirely S-protected thiolated pectin for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 85, 1266–1273. https://doi.org/10.1016/j.ejpb.2013.09.017.

    Article  Google Scholar 

  81. 81.

    Sharma, R., Ahuja, M., & Kaur, H. (2012). Thiolated pectin nanoparticles: preparation, characterization and ex vivo corneal permeation study. Carbohydrate Polymers, 87, 1606–1610. https://doi.org/10.1016/j.carbpol.2011.09.065.

    Article  Google Scholar 

  82. 82.

    Mittal, N., & Kaur, G. (2014). In situ gelling ophthalmic drug delivery system: formulation and evaluation. Journal of Applied Polymer Science, 131, 1–9. https://doi.org/10.1002/app.39788.

    Article  Google Scholar 

  83. 83.

    Aher, N., & Nair, H. (2014). Bilayered films based on novel polymer derivative for improved ocular therapy of gatifloxacin. Scientific World Journal. https://doi.org/10.1155/2014/297603.

  84. 84.

    Budai-Szűcs, M., Horvát, G., Gyarmati, B., Szilágyi, B., Szilágyi, A., Berkó, S., Ambrus, R., Szabó-Révész, P., Sandri, G., Bonferoni, M., Caramella, C., & Csányi, E. (2017). The effect of the antioxidant on the properties of thiolated poly(aspartic acid) polymers in aqueous ocular formulations. European Journal of Pharmaceutics and Biopharmaceutics, 113, 178–187.

    Google Scholar 

  85. 85.

    Hornof, M., Weyenberg, W., Ludwig, A., & Bernkop-Schnürch, A. (2003). Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans. Journal of Controlled Release, 89, 419–428. https://doi.org/10.1016/S0168-3659(03)00135-4.

    Article  Google Scholar 

  86. 86.

    Krauland A, Leitner V Bernkop-schnu A (2003) Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups, Journal of Pharmaceutical Sciences 92:1234–1241.

  87. 87.

    Elbahwy, I., Lupo, N., Ibrahim, H., Ismael, H., Kasem, A., Caliskan, C., Matuszczak, B., & Bernkop-Schnürch, A. (2018). Mucoadhesive self-emulsifying delivery systems for ocular administration of econazole. International Journal of Pharmaceutics, 541, 72–80.

    Google Scholar 

  88. 88.

    Horno, M., & Bernkop-Schnürch, A. (2002). In vitro evaluation of the permeation enhancing effect of polycarbophil–cysteine conjugates on the cornea of rabbits. Journal of Pharmaceutical Sciences, 91, 2588–2592.

    Google Scholar 

  89. 89.

    Vidal, F., & Hamaide, T. (1995). Non-ionic thiol-ended surfactants synthesis and NMR characterization. Polymer Bulletin, 35, 1–7.

    Google Scholar 

  90. 90.

    Casiraghi, A., Selmin, F., Minghetti, F., Cilurzo, F., & Montanari, L. (2016). Nonionic surfactants: polyethylene glycol (PEG) ethers and fatty acid esters as penetration enhancers. In N. Dragicevic & H. Maibach (Eds.), Percutaneous penetration enhancer chemical methods in penetration enhancement (1st ed., pp. 251–255). Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  91. 91.

    Shen, J., Deng, Y., Jin, X., Ping, Q., Su, Z., & Li, L. (2010). Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine a: improving in vivo ocular distribution. International Journal of Pharmaceutics, 402, 248–253.

    Google Scholar 

  92. 92.

    Yang, J., Yan, J., Zhou, Z., & Amsden, B. (2014). Dithiol-PEG-PDLLA micelles: preparation and evaluation as potential topical ocular delivery vehicle. Biomacromolecules., 15, 1346–1354. https://doi.org/10.1021/bm4018879.

    Article  Google Scholar 

  93. 93.

    Shieh, W., & Hedges, A. (1996). Properties and applications of cyclodextrins. Journal of Macromolecular Science: Pure and Applied Chemistry, 33, 673–683. https://doi.org/10.1080/10601329608010886.

    Article  Google Scholar 

  94. 94.

    Del Valle, E. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39, 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9.

    Article  Google Scholar 

  95. 95.

    Moghadam, A., Ijaz, M., Asim Mahmood, M., Jelkmann, M., Matuszczak, B., & Bernkop-Schnürch, A. (2018). Non-ionic thiolated cyclodextrins—the next generation. International Journal of Nanomedicine, 13, 4003–4013. https://doi.org/10.2147/IJN.S153226.

    Article  Google Scholar 

  96. 96.

    Kulkarni, A., Patel, H., Surana, S., Vanjari, Y., Belgamwar, V., & Pardeshi, C. (2017). N,N,N-Trimethyl chitosan: an advanced polymer with myriad of opportunities in nanomedicine. Carbohydrate Polymers, 157, 875–902. https://doi.org/10.1016/j.carbpol.2016.10.041.

    Article  Google Scholar 

  97. 97.

    Wang, B., Ruihua, H., & Zheng, D. (2012). Preparation and characterization of a quaternized chitosan. Journal of Materials Science, 47, 845–851. https://doi.org/10.1007/s10853-011-5862-4.

    Article  Google Scholar 

  98. 98.

    Shinde, U. A., Joshi, P. N., Jain, D. D., & Singh, K. (2019). Preparation and evaluation of N-trimethyl chitosan nanoparticles of flurbiprofen for ocular delivery. Current Eye Research, 44, 575–582.

    Google Scholar 

  99. 99.

    Colo, G., Burgalassi, S., Zambito, Y., Monti, D., & Chetoni, P. (2004). Effects of different N-trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation. Journal of Pharmaceutical Sciences, 93, 2851–2862. https://doi.org/10.1002/jps.20197.

    Article  Google Scholar 

  100. 100.

    Asasutjarit, R., Theerachayanan, T., Kewsuwan, P., Veeranondha, S., Fuongfuchat, A., & Ritthidej, G. (2017). Gamma sterilization of diclofenac sodium loaded N-trimethyl chitosan nanoparticles for ophthalmic use. Carbohydr. Polym, 157, 603–612. https://doi.org/10.1016/j.carbpol.2016.10.029.

    Article  Google Scholar 

  101. 101.

    Wu, J., Su, Z., & Ma, G. (2006). A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. International Journal of Pharmaceutics, 315, 1–11. https://doi.org/10.1016/j.ijpharm.2006.01.045.

    Article  Google Scholar 

  102. 102.

    Zhao, F., Lu, J., Jin, X., Wang, Z., Sun, Y., Gao, D., Li, X., & Liu, R. (2018). Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation. Colloids Surfaces B Biointerfaces, 172, 288–297. https://doi.org/10.1016/j.colsurfb.2018.08.046.

    Article  Google Scholar 

  103. 103.

    He, W., Guo, X., Feng, M., & Mao, N. (2013). In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. International Journal of Pharmaceutics, 458, 305–314.

    Google Scholar 

  104. 104.

    Brannigan, R., & Khutoryanskiy, V. (2017). Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery. Colloids Surfaces B Biointerfaces., 155, 538–543.

    Google Scholar 

  105. 105.

    Rao, J., & Geckeler, K. (2011). Polymer nanoparticles: preparation techniques and size-control parameters. Progress in Polymer Science, 36, 887–913.

    Google Scholar 

  106. 106.

    Patil, J., & Naik, J. (2018). Carrier based oral nano drug delivery framework: a review. Current Nanomaterials. https://doi.org/10.2174/2405461503666180703094241.

  107. 107.

    Shegokar, R., Al, S., & Mitri, K. (2011). Present status tuberculosis of nanoparticle for treatment of tuberculosis. Journal of Pharmaceutical Sciences, 14, 100–116.

    Google Scholar 

  108. 108.

    Kumar, S., Dilbaghi, N., Saharan, R., & Bhanjana, G. (2012). Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. BioNanoScience, 4, 227–250. https://doi.org/10.1007/s12668-012-0060-7.

    Article  Google Scholar 

  109. 109.

    Yoncheva, K., Vandervoort, J., & Ludwig, A. (2011). Development of mucoadhesive poly(lactide-co-glycolide) nanoparticles for ocular application. Pharmaceutical Development and Technology, 16, 29–35.

    Google Scholar 

  110. 110.

    Liu, S., Dozois, M., Chang, C., Ahmad, A., Ng, D. L. T., Hileeto, D., Liang, H., Reyad, M., Boyd, S., Jones, L., & Gu, F. (2016). Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage. Molecular Pharmaceutics, 13, 2897–2905. https://doi.org/10.1021/acs.molpharmaceut.6b00445.

    Article  Google Scholar 

  111. 111.

    Bhatta, R., Chandasana, H., Chhonker, Y., Rathi, C., Kumar, D., Mitra, K., & Shukla, P. (2012). Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. International Journal of Pharmaceutics, 432, 105–112.

    Google Scholar 

  112. 112.

    Kalam, M. (2016). Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. International Journal of Biological Macromolecules, 89, 127–136. https://doi.org/10.1016/j.ijbiomac.2016.04.070.

    Article  Google Scholar 

  113. 113.

    Naveen, N., Gopinath, C., & Rao, D. (2017). A spotlight on thiolated natural polymers and their relevance in mucoadhesive drug delivery system. Future Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.fjps.2017.08.002.

  114. 114.

    Herrero-Vanrell, R. (2015). Drug product development for the back of the eye. In U. Kompella & H. Edelhauser (Eds.), Drug product development for the back of the eye (pp. 231–259). Boston: Springer.

    Google Scholar 

  115. 115.

    Baranowski, P., Karolewicz, B., Gajda, M., & Pluta, J. (2014). Ophthalmic drug dosage forms: characterisation and research methods. Scientific World Journal. https://doi.org/10.1155/2014/861904.

  116. 116.

    Shinde, U., Shete, J., Nair, H., & Singh, K. (2014). Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine. Pharmaceutical Development and Technology, 19, 813–823.

    Google Scholar 

  117. 117.

    Choy, Y., Park, J., & Prausnitz, M. (2008). Mucoadhesive microparticles engineered for ophthalmic drug delivery. Journal of Physics and Chemistry of Solids, 69, 1533–1536.

    Google Scholar 

  118. 118.

    Ding, D., Kundukad, B., Somasundar, A., Vijayan, S., Khan, S. A., & Doyle, P. S. (2018). Design of mucoadhesive PLGA microparticles for ocular drug delivery. ACS Applied Bio Materials., 16, 561–571.

    Google Scholar 

  119. 119.

    Akbarzadeh, A., Rezaei-sadabady, R., Davaran, S., Joo, S., & Zarghami, N. (2013). Liposome : classification, preparation, and applications. Nanoscale Research Letters. https://doi.org/10.1186/1556-276X-8-102.

  120. 120.

    Narsaiah, K., Jha, S. N., Wilson, R. A., Mandge, H. M., Manikantan, M. R., Malik, R. K., & Vij, S. (2013). Pediocin-loaded nanoliposomes and hybrid alginate–nanoliposome delivery systems for slow release of pediocin. Bionanoscience, 3, 37–42. https://doi.org/10.1007/s12668-012-0069-y.

    Article  Google Scholar 

  121. 121.

    Agarwal, R., Iezhitsa, I., Agarwal, P., Alimah, N., Nasir, A., Razali, N., Alyautdin, R., & Ismail, N. (2014). Liposomes in topical ophthalmic drug delivery: an update. Drug Delivery, 23, 1075–1091. https://doi.org/10.3109/10717544.2014.943336.

    Article  Google Scholar 

  122. 122.

    Zylberberg, C., Matosevic, S., Zylberberg, C., & Matosevic, S. (2016). Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Delivery, 23, 3319–3329. https://doi.org/10.1080/10717544.2016.1177136.

    Article  Google Scholar 

  123. 123.

    Mehanna, M., Elmaradny, H., & Samaha, M. (2010). Mucoadhesive liposomes as ocular delivery system : physical, microbiological, and in vivo assessment. Drug Development and Industrial Pharmacy, 36, 108–118. https://doi.org/10.3109/03639040903099751.

    Article  Google Scholar 

  124. 124.

    Quinteros, D., Vicario-de-la-Torre, M., Andrés-Guerrero, V., Palma, S., Allemandi, D., Herrero-Vanrell, R., & Molina-Martínez, I. T. (2014). Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of the melatonin analogue 5-MCA-NAT in rabbit eyes. PLoS One. https://doi.org/10.1371/journal.pone.0110344.

  125. 125.

    Lin, J., Wu, H., Wang, Y., Lin, J., Chen, Q., & Zhu, X. (2014). Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes. Drug Delivery, 23, 1144–1151. https://doi.org/10.3109/10717544.2014.991952.

    Article  Google Scholar 

  126. 126.

    Sepahvandi, A., Eskandari, M., & Moztarzadeh, F. (2016). Drug delivery systems to the posterior segment of the eye: implants and nanoparticles. BioNanoScience, 6, 276–283. https://doi.org/10.1007/s12668-016-0219-8.

    Article  Google Scholar 

  127. 127.

    Uchegbu, I., & Vyas, S. (1998). Non-ionic surfactant based vesicles (niosomes) in drug delivery. International Journal of Pharmaceutics, 172, 33–70. https://doi.org/10.1016/S0378-5173(98)00169-0.

    Article  Google Scholar 

  128. 128.

    Abdelkader, H., Alani, A., & Alany, R. (2014). Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Delivery, 21, 87–100.

    Google Scholar 

  129. 129.

    Abdelbary, A., Salem, H., Khallaf, R., & Ali, A. (2017). Mucoadhesive niosomal in situ gel for ocular tissue targeting: in vitro and in vivo evaluation of lomefloxacin hydrochloride. Pharmaceutical Development and Technology, 22, 409–417. https://doi.org/10.1080/10837450.2016.1219916.

    Article  Google Scholar 

  130. 130.

    Aggarwal, D., & Kaur, I. (2005). Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. International Journal of Pharmaceutics, 290, 155–159. https://doi.org/10.1016/j.ijpharm.2004.10.026.

    Article  Google Scholar 

  131. 131.

    Zeng, W., Li, Q., Wan, T., Liu, C., Pan, W., Wu, Z., Zhang, G., Pan, J., Qin, M., Lin, Y., Wu, C., & Xu, Y. (2016). Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surfaces B Biointerfaces., 141, 28–35. https://doi.org/10.1016/j.colsurfb.2016.01.014.

    Article  Google Scholar 

  132. 132.

    Shukr, M. (2016). Novel in situ gelling ocular inserts for voriconazole-loaded niosomes: design, in vitro characterisation and in vivo evaluation of the ocular irritation and drug pharmacokinetics. Journal of Microencapsulation, 33, 71–79. https://doi.org/10.3109/02652048.2015.1128489.

    Article  Google Scholar 

  133. 133.

    Maharjan, P., Cho Hyung, K., Maharjan, A., Shin Cheol, M., Moon, C., & Min Ah, K. (2018). Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. Journal of Pharmaceutical Investigation. https://doi.org/10.1007/s40005-018-0404-6.

  134. 134.

    Ramadan, A., Eladawy, S., El-Enin, A., & Hussein, Z. (2019). Development and investigation of timolol maleate niosomal formulations for the treatment of glaucoma. Journal of Pharmaceutical Investigation. https://doi.org/10.1007/s40005-019-00427-1.

  135. 135.

    Alhalafi, A. M. (2017). Applications of polymers in intraocular drug delivery systems. Oman Journal of Ophthalmology. https://doi.org/10.4103/0974-620X.200692.

  136. 136.

    Lancina III, M. G., & Yang, H. (2017). Dendrimers for ocular drug delivery. Canadian Journal of Chemistry, 95, 897–902. https://doi.org/10.1139/cjc-2017-0193.

    Article  Google Scholar 

  137. 137.

    Bajracharya, R., Song, J. G., Back, S. Y., & Han, H. K. (2019). Recent advancements in non-invasive formulations for protein drug delivery. Computational and Structural Biotechnology Journal. https://doi.org/10.1016/j.csbj.2019.09.004.

  138. 138.

    Sharma, A. K., Kumar, R., Nishal, B., & Das, O. (2013). Nanocarriers as promising drug vehicles for the management of tuberculosis. BioNanoScience, 3, 102–111. https://doi.org/10.1007/s12668-013-0084-7.

    Article  Google Scholar 

  139. 139.

    Kambhampati, S. P., & Kannan, R. M. (2013). Dendrimer nanoparticles for ocular drug delivery. Journal of Ocular Pharmacology and Therapeutics, 29, 151–165. https://doi.org/10.1089/jop.2012.0232.

    Article  Google Scholar 

  140. 140.

    Bravo-Osuna, I., Vicario-De-La-Torre, M., Andrés-Guerrero, V., Sánchez-Nieves, J., Guzmán-Navarro, M., de la Mata, F. J., Gómez, R., de Las Heras, B., Argueso, P., Ponchel, G., & Herrero-Vanrell, R. (2016). Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration. Molecular Pharmacology. https://doi.org/10.1021/acs.molpharmaceut.6b00182.

  141. 141.

    Yavuz, B., Pehlivan, S. B., Vural, İ., & Ünlü, N. (2015). In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery. Journal of Pharmacy & Pharmaceutical Sciences, 104, 3814–3823.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Science and Engineering Research Board (SERB), New Delhi, for providing the financial support, in terms of Empowerment and Equity Opportunities for Excellence in Science (EEQ/2018/000649).

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jitendra B. Naik.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

This review does not contain any studies with human and animal subjects performed by any of the authors.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 161 kb)

ESM 2

(PDF 161 kb)

ESM 3

(PDF 161 kb)

ESM 4

(PDF 162 kb)

ESM 5

(PDF 139 kb)

ESM 6

(PDF 149 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naik, J.B., Pardeshi, S.R., Patil, R.P. et al. Mucoadhesive Micro-/Nano Carriers in Ophthalmic Drug Delivery: an Overview. BioNanoSci. 10, 564–582 (2020). https://doi.org/10.1007/s12668-020-00752-y

Download citation

Keywords

  • Ophthalmic drug delivery
  • Mucoadhesion
  • Carriers
  • Eye
  • Bioavailability