Skip to main content
Log in

Green Synthesis of Iron Oxide Nanoparticles Mediated by Filamentous Fungi Isolated from Sundarban Mangrove Ecosystem, India

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In the present study, biosynthesis of iron oxide nanoparticles (IONPs) was achieved using three manglicolous fungi, STSP10 (Trichoderma asperellum), STSP 19 (Phialemoniopsis ocularis) and STSP 27 (Fusarium incarnatum) isolated from estuarine mangrove sediment of Indian Sundarban. Synthesised IONPs were initially monitored by UV-Vis spectrophotometer and further characterised by Fourier transform infrared (FTIR) spectroscopy, which provides information regarding proteins and other organic residues involved with iron nanoparticle. The morphology of iron nanoparticle were found to be spherical with average particle size ranging between 25 ± 3.94 nm for T. asperellum, 13.13 ± 4.32 nm for P. ocularis and 30.56 ± 8.68 nm for F. incarnatum, which were confirmed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Energy-dispersive x-ray analysis (EDX) analysis was performed during FESEM study to confirm the presence of elemental Fe in the sample. X-ray diffraction (XRD) pattern has shown that the IONPs are iron oxide in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277, 1078–1081.

    Article  Google Scholar 

  2. Luechinger, N. A., Grass, R. N., Athanassiou, E. K., & Stark, W. J. (2010). Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chemistry of Materials, 22, 155–160.

    Article  Google Scholar 

  3. Bakshi, M., Ghosh, S., & Chaudhuri, P. (2015). Green synthesis, characterization and antimicrobial potential of sliver nanoparticles using three mangrove plants from Indian Sundarban. Bionanoscience, 5, 162–170.

    Article  Google Scholar 

  4. Thanh, N. T., & Green, L. A. (2010). Functionalisation of nanoparticles for biomedical applications. Nano Today, 5, 213–230.

    Article  Google Scholar 

  5. Atabaev, T. S. (2018). PEG-coated superparamagnetic dysprosium-doped Fe3O4 nanoparticles for potential MRI imaging. Bionanoscience, 8, 299–303.

    Article  Google Scholar 

  6. Li, Z., Kawashita, M., Araki, N., Mitsumori, M., & Hiraoka, M. (2009). Preparation of size-controlled magnetite nanoparticles for hyperthermia of cancer. Transactions of the Materials Research Society of Japan, 34, 77–80.

    Article  Google Scholar 

  7. Lin, K. S., Chang, N. B., & Chuang, T. D. (2008). Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater. Science and Technology of Advanced Materials, 9, 025015.

    Article  Google Scholar 

  8. Gui, M., Smuleac, V., Ormsbee, L. E., Sedlak, D. L., & Bhattacharyya, D. (2012). Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of tri chloro ethylene from water. Journal of Nanoparticle Research, 14, 861.

    Article  Google Scholar 

  9. Ingle, A., Rai, M., Gade, A., & Bawaskar, M. (2009). Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11, 2079.

    Article  Google Scholar 

  10. Mallik, K., Witcomb, M. J., & Scurell, M. S. (2005). Redox catalytic property of gold nanoclusters: evidence of an electron-relay effect. Applied Physics A: Materials Science & Processing, 80, 797–801.

    Article  Google Scholar 

  11. Liz-Marzan, L. (2006). Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 22, 32–41.

    Article  Google Scholar 

  12. Fedlheim, D. L., & Foss, C. A. (2001). Metal nanoparticles: synthesis, characterization, and applications. Boca Raton: CRC Press.

    Google Scholar 

  13. Kamat, P. V. (1993). Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 93, 267–300.

    Article  Google Scholar 

  14. Giguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, 27, 4945–4948.

    Article  Google Scholar 

  15. Park, S. J., Kim, S., Lee, S., Khim, Z. G., Char, K., & Hyeon, T. (2000). Synthesis and magnetic studies of uniform iron nanorods and nanospheres. Journal of the American Chemical Society, 122(35), 8581–8582.

    Article  Google Scholar 

  16. Sun, S., & Zeng, H. (2002). Size-controlled synthesis of magnetite nanoparticles. JACS, 124, 8204–8205.

    Article  Google Scholar 

  17. Goya, G. F., Berquo, T. S., Fonseca, F. C., & Morales, M. P. (2003). Static and dynamic magnetic properties of spherical magnetite nanoparticles. Journal of Applied Physics, 94, 3520–3528.

    Article  Google Scholar 

  18. Palomo, J., & Filice, M. (2016). Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts. Nanomaterials, 6, 84.

    Article  Google Scholar 

  19. Bhargava A, Jain N, Panwar J (2011) Synthesis and application of magnetic nanoparticles: a biological perspective. In: Dhingra HK, Jha PN, Bajpai P (eds) Current topics in biotechnology and microbiology: recent trends. Lap Lambert Academic Publishing AG & Co Kg, Colne, pp 117–155.

  20. Das, P., Mahanty, S., Ganguli, A., Das, P., & Chaudhuri, P. (2019). Role of manglicolous fungi isolated from Indian Sundarban mangrove forest for the treatment of metal containing solution: batch and optimization using response surface methodology. Environmental Technology and Innovation, 13, 166–178.

    Article  Google Scholar 

  21. Teja, A. S., & Koh, P. Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55, 22–45.

    Article  Google Scholar 

  22. Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19, 8671–8677.

    Article  Google Scholar 

  23. Pattanayak, M., & Nayak, P. L. (2013). Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World Journal of Nano Science & Technology, 2(1), 06–09.

    Google Scholar 

  24. Rao, A., Bankar, A., Kumar, A. R., Gosavi, S., & Zinjarde, S. (2013). Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. Journal of Contaminant Hydrology, 146, 63–73.

    Article  Google Scholar 

  25. Bharde, A., Wani, A., Shouche, Y., Joy, P. A., Prasad, B. L., & Sastry, M. (2005). Bacterial aerobic synthesis of nanocrystalline magnetite. JACS, 127, 9326–9327.

    Article  Google Scholar 

  26. Mohamed, Y. M., Azzam, A. M., Amin, B. H., & Safwat, N. A. (2015). Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. African Journal of Biotechnology, 14, 1234–1241.

    Article  Google Scholar 

  27. Subramaniyam, V., Subashchandrabose, S. R., Thavamani, P., Megharaj, M., Chen, Z., & Naidu, R. (2015). Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of Applied Phycology, 27, 861–1869.

    Article  Google Scholar 

  28. Gade, A., Ingle, A., Whiteley, C., & Rai, M. (2010). Mycogenic metal nanoparticles: progress and applications. Biotechnology Letters, 32, 593–600.

    Article  Google Scholar 

  29. Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., & Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–141.

    Article  Google Scholar 

  30. Tarafdar, J. C., & Raliya, R. (2013). Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. Journal of Nanoparticles. https://doi.org/10.1155/2013/141274.

  31. Bhargava, A., Jain, N., Barathi, M., Akhtar, M. S., Yun, Y. S., & Panwar, J. (2013). Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. Journal of Nanoparticle Research, 15, 2031.

    Article  Google Scholar 

  32. Kathiresan, K., Manivannan, S., Nabeel, M. A., & Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces. B, Biointerfaces, 71, 133–137.

    Article  Google Scholar 

  33. Saha, S., Sarkar, J., Chattopadhyay, D., Patra, S., Chakraborty, A., et al. (2010). Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodules and its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 5, 887–895.

    Google Scholar 

  34. Sarkar, J., Chattopadhyay, D., Patra, S., Deo, S. S., Sinha, S., et al. (2011a). Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Digest Journal of Nanomaterials and Biostructures, 6, 563–573.

    Google Scholar 

  35. Sridhar K R (2013) Mangrove fungal diversity of west coast of India. Mangroves of India: their biology and uses, 161–182.

  36. Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquatic Sciences, 68, 338–354.

    Article  Google Scholar 

  37. Hyde, K. D., & Jones, E. B. G. (1988). Marine mangrove fungi. Marine Ecology, 9, 15–33. https://doi.org/10.1111/j.1439-0485.1988.tb00196.x.

    Article  Google Scholar 

  38. Jones, E. B. G. (2000). Marine fungi: some factors influencing biodiversity. Fungal Diversity, 4, 53–73.

    Google Scholar 

  39. Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology. The higher fungi. New York: Academic Press.

    Google Scholar 

  40. Findlay, S., Smith, P. J., & Meyer, J. L. (1986). Effect of detritus addition on metabolism of river sediment. Hydrobiologia, 137, 257–263.

    Article  Google Scholar 

  41. Barnett, H. L., & Hunter, B. B. (1972). Illustrated genera of imperfect fungi. Minneapolis: Burgess publishing company.

    Google Scholar 

  42. Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compandium of soil fungi. Vols. 1 and 2. London: Academic Press.

    Google Scholar 

  43. Watanabe T (2010) Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC press.

  44. Aamir, S., Sutar, S., Singh, S. K., & Baghela, A. (2015). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathology & Quarantine, 5, 74–81.

    Article  Google Scholar 

  45. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylo- genetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols a guide to methods and applications (pp. 315–322). San Diego: Academic aPress. https://doi.org/10.1016/b978-0-12-372180-8.50042-1.

    Google Scholar 

  46. Qin, Z., Joo, J., Gu, L., & Sailor, M. J. (2014). Size control of porous silicon nanoparticles by electrochemical perforation etching. Particle and Particle Systems Characterization, 31, 252–256.

    Article  Google Scholar 

  47. Kozlov, N. K., Natashina, U. A., Tamarov, K. P., Gongalsky, M. B., et al. (2017). Recycling of silicon: From industrial waste to biocompatible nanoparticles for nanomedicine. Mater Res Express, 4, 095026.

    Article  Google Scholar 

  48. Gottimukkala, K. S. V. (2017). Green synthesis of iron nanoparticles using green tea leaves extract. Journal of Nanomedicine & Biotherapeutic Discovery, 7, 151. https://doi.org/10.4172/2155-983X.1000151.

    Google Scholar 

  49. Mazumdar, H., & Haloi, N. (2017). A study on biosynthesis of iron nanoparticles by Pleurotus sp. Journal of Microbiology and Biotechnology Research, 1, 39–49.

    Google Scholar 

  50. Basu, S., & Chakravorty, D. (2006). Optical properties of nanocomposites with iron core–iron oxide shell structure. Journal of Non-Crystalline Solids, 352, 380–385.

    Article  Google Scholar 

  51. Guo, L., Huang, Q., Li, X. Y., & Yang, S. (2001). Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 3, 1661–1665.

    Article  Google Scholar 

  52. Morgada, M. E., Levy, I. K., Salomone, V., Farías, S. S., López, G., & Litter, M. I. (2009). Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids. Catalysis Today, 143, 261–268.

    Article  Google Scholar 

  53. Namduri, H., & Nasrazadani, S. (2008). Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corrosion Science, 50, 2493–2497.

    Article  Google Scholar 

  54. Macdonald, I. D. G., & Smith, W. E. (1996). Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir, 12, 706–713.

    Article  Google Scholar 

  55. Yang, T., Li, Z., Wang, L., Guo, C., & Sun, Y. (2007). Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir, 23, 10533–10538.

    Article  Google Scholar 

  56. Rangnekar, A., Sarma, T. K., Singh, A. K., Deka, J., Ramesh, A., & Chattopadhyay, A. (2007). Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir, 23, 5700–5706.

    Article  Google Scholar 

  57. Wang, Y., Maksimuk, S., Shen, R., & Yang, H. (2007). Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chemistry, 9, 1051–1056.

    Article  Google Scholar 

  58. El-Lateef, H. M. A., Touny, A. H., & Saleh, M. M. (2018). Synthesis of crystalline and amorphous iron phosphate nanoparticles by simple low-temperature method. Materials Research Express, 6(3), 035030.

    Article  Google Scholar 

  59. Kappes, B. B., Meacham, B. E., Tang, Y. L., & Branagan, D. J. (2003). Relaxation, recovery, crystallization, and recrystallization transformations in an iron-based amorphous precursor. Nanotechnology, 14, 1228.

    Article  Google Scholar 

  60. Baumgartner, J., Dey, A., Bomans, P. H., et al. (2013). Nucleation and growth of magnetite from solution. Nature Materials, 12, 310.

    Article  Google Scholar 

  61. Thanh, N. T., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114, 7610–7630.

    Article  Google Scholar 

  62. Nidhin, M., Indumathy, R., Sreeram, K. J., & Nair, B. U. (2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 31, 93–96.

    Article  Google Scholar 

  63. Shahwan, T., Sirriah, S. A., Nairat, M., Boyacı, E., Eroğlu, A. E., & Scott TB Hallam, K. R. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172, 258–266.

    Article  Google Scholar 

  64. Hashimoto, H., Yokoyama, S., Asaoka, H., et al. (2007). Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. Journal of Magnetism and Magnetic Materials, 310, 2405–2407.

    Article  Google Scholar 

  65. Sugimoto, T., & Matijević, E. (1980). Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of Colloid and Interface Science, 74, 227–243.

    Article  Google Scholar 

  66. Hasany, S. F., Ahmed, I., Rajan, J., & Rehman, A. (2012). Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanoscience and Nanotechnology, 2, 148–158. https://doi.org/10.5923/j.nn.20120206.01.

    Article  Google Scholar 

  67. Xu, H., Wang, X., & Zhang, L. (2008). Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technology, 185, 176–180.

    Article  Google Scholar 

  68. Joseyphus, R. J., Shinoda, K., Kodama, D., & Jeyadevan, B. (2010). Size controlled Fe nanoparticles through polyol process and their magnetic properties. Materials Chemistry and Physics, 123, 487–493.

    Article  Google Scholar 

  69. Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q., & Volinsky, A. A. (2011). Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters, 65(12), 1882–1884.

    Article  Google Scholar 

  70. Salazar-Alvarez, G., Muhammed, M., & Zagorodni, A. A. (2006). Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chemical Engineering Science, 61, 4625–4633.

    Article  Google Scholar 

  71. Starowicz, M., Starowicz, P., Żukrowski, J., Przewoźnik, J., et al. (2011). Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. Journal of Nanoparticle Research, 13, 7167–7176.

    Article  Google Scholar 

  72. Hu, X., Yu, J. C., Gong, J., Li, Q., & Li, G. (2007). α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Advanced Materials, 19, 2324–2329.

    Article  Google Scholar 

  73. Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E., & Maensiri, S. (2013). Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Applied Physics A, 111(4), 1187–1193.

    Article  Google Scholar 

  74. Madhavi, V., Prasad, T. N., et al. (2013). Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta A, 116, 17–25.

    Article  Google Scholar 

  75. Wang, Z., Fang, C., & Mallavarapu, M. (2015). Characterization of iron–polyphenol complex nanoparticles synthesized by sage (Salvia officinalis) leaves. Environmental Technology and Innovation, 4, 92–97.

    Article  Google Scholar 

  76. Kaul, R. K., Kumar, P., Burman, U., Joshi, P., et al. (2012). Magnesium and iron nanoparticles production using microorganisms and various salts. Materials Science - Poland, 30, 254–258.

    Article  Google Scholar 

  77. Pavani, K. V., & Kumar, N. S. (2013). Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species kvp 12. Am J Nanomater, 1, 24–26.

    Google Scholar 

  78. Sundaram, P. A., Augustine, R., & Kannan, M. (2012). Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnology and Bioprocess Engineering, 17(4), 835–840.

    Article  Google Scholar 

  79. Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18, 5954–5964.

    Article  Google Scholar 

Download references

Funding

The authors are thankful to Department of Biotechnology (DBT), India (No. BT/PR9465/NDB/39/360/2013) and Centre for Nanoscience and Nanotechnology (CRNN), University of Calcutta, for financial and infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punarbasu Chaudhuri.

Ethics declarations

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Statement

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanty, S., Bakshi, M., Ghosh, S. et al. Green Synthesis of Iron Oxide Nanoparticles Mediated by Filamentous Fungi Isolated from Sundarban Mangrove Ecosystem, India. BioNanoSci. 9, 637–651 (2019). https://doi.org/10.1007/s12668-019-00644-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00644-w

Keywords

Navigation