Skip to main content
Log in

Effects of Gold Nanoparticles with Different Surface Charges on Cellular Internalization and Cytokine Responses in Monocytes

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Surface modification of gold nanoparticles (AuNPs) affects the interactions between the AuNPs and biological systems. To use AuNPs in biomedical applications, an investigation of how different surface charges of AuNPs affect the internalization mechanisms and functions of monocytes is needed. In this study, U937 cells were exposed to AuNPs with positive (AuNPs+ve) and negative (AuNPs-ve) surface charges. Cellular responses to the AuNPs, including cell uptake pathways, cell activation and cytokine production, were analysed. The results indicated different responses to AuNPs-ve and AuNPs+ve in outcomes including internalization pathways, cell activation and cytokine production levels. Interestingly, the results suggested that AuNPs+ve tended to enter the cells via macropinocytosis and strongly elicited a cellular response of IL-6 production via NF-kB activation, whereas the AuNPs-ve suppressed IL-6 production. Therefore, these results provide essential information for designing nanoparticles and may contribute to possible future nanomedicine applications, such as drug delivery and vaccination.

The demonstration of AuNPs+ve and AuNPs-ve were taken up through the immune cells by different pathways via phagocytosis/macropinocytosis, clathrin-mediated endocytosis, and caveolae-mediated endocytosis and clathrin-mediated endocytosis, respectively. Then, the cellular activations were occurred and observed by NF-kB activation and cytokine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khan, F., Khan, M. M., & Kim, Y.-M. (2018). Recent progress and future perspectives of antibiofilm drugs immobilized on nanomaterials. Current Pharmaceutical Biotechnology, 19, 631–643. https://doi.org/10.2174/1389201019666180828090052.

    Article  Google Scholar 

  2. Farooq, M. U., Novosad, V., Rozhkova, E. A., et al. (2018). Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Scientific Reports, 8(2907). https://doi.org/10.1038/s41598-018-21331-y.

  3. Cavallaro, G., Lazzara, G., & Fakhrullin, R. (2018). Mesoporous inorganic nanoscale particles for drug adsorption and controlled release. Therapeutic Delivery, 9, 287–301. https://doi.org/10.4155/tde-2017-0120.

    Article  Google Scholar 

  4. Meola, A., Rao, J., Chaudhary, N., et al. (2018). Gold nanoparticles for brain tumor imaging: a systematic review. Frontiers in Neurology, 9(328). https://doi.org/10.3389/fneur.2018.00328.

  5. Li Volsi, A., Scialabba, C., Vetri, V., et al. (2017). Near-infrared light responsive folate targeted gold nanorods for combined photothermal-chemotherapy of osteosarcoma. ACS Applied Materials & Interfaces, 9, 14453–14469. https://doi.org/10.1021/acsami.7b03711.

    Article  Google Scholar 

  6. Sanvicens, N., & Marco, M. P. (2008). Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends in Biotechnology, 26, 425–433. https://doi.org/10.1016/j.tibtech.2008.04.005.

    Article  Google Scholar 

  7. De Jong, W. H., & Borm, P. J. A. (2008). Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine, 3, 133–149. https://doi.org/10.2147/ijn.s596.

    Article  Google Scholar 

  8. Cui, H.-F., Xu, T.-B., Sun, Y.-L., et al. (2015). Hairpin DNA as a biobarcode modified on gold nanoparticles for electrochemical DNA detection. Analytical Chemistry, 87, 1358–1365. https://doi.org/10.1021/ac504206n.

    Article  Google Scholar 

  9. Colombo, M., Mazzucchelli, S., Collico, V., et al. (2012). Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells. Angewandte Chemie, International Edition, 51, 9272–9275. https://doi.org/10.1002/anie.201204699.

    Article  Google Scholar 

  10. Dobrovolskaia, M. A., Shurin, M., & Shvedova, A. A. (2016). Current understanding of interactions between nanoparticles and the immune system. Toxicology and Applied Pharmacology, 299, 78–89. https://doi.org/10.1016/j.taap.2015.12.022.

    Article  Google Scholar 

  11. Hillaireau, H., & Couvreur, P. (2009). Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and Molecular Life Sciences, 66, 2873–2896. https://doi.org/10.1007/s00018-009-0053-z.

    Article  Google Scholar 

  12. Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., et al. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences of the United States of America, 105, 11613–11618. https://doi.org/10.1073/pnas.0801763105.

    Article  Google Scholar 

  13. Salatin, S., & Yari Khosroushahi, A. (2017). Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 21, 1668–1686. https://doi.org/10.1111/jcmm.13110.

    Article  Google Scholar 

  14. Rejman, J., Oberle, V., Zuhorn, I. S., & Hoekstra, D. (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. The Biochemical Journal, 377, 159–169. https://doi.org/10.1042/BJ20031253.

    Article  Google Scholar 

  15. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668. https://doi.org/10.1021/nl052396o.

    Article  Google Scholar 

  16. Fröhlich, E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 7, 5577. https://doi.org/10.2147/IJN.S36111.

    Article  Google Scholar 

  17. Wang, P., Wang, X., Wang, L., et al. (2015). Interaction of gold nanoparticles with proteins and cells. Science and Technology of Advanced Materials, 16, 034610. https://doi.org/10.1088/1468-6996/16/3/034610.

    Article  Google Scholar 

  18. Lou, S., Ye, J.-Y., Li, K.-Q., & Wu, A. (2012). A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. Analyst, 137, 1174. https://doi.org/10.1039/c2an15844b.

    Article  Google Scholar 

  19. Sumbayev, V. V., Yasinska, I. M., Garcia, C. P., et al. (2013). Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small, 9, 472–477. https://doi.org/10.1002/smll.201201528.

    Article  Google Scholar 

  20. Arvizo, R. R., Miranda, O. R., Thompson, M. A., et al. (2010). Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Letters, 10, 2543–2548. https://doi.org/10.1021/nl101140t.

    Article  Google Scholar 

  21. Gao, H., Yang, Z., Zhang, S., et al. (2013). Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Scientific Reports, 3, 2534. https://doi.org/10.1038/srep02534.

    Article  Google Scholar 

  22. Jiang, Y., Huo, S., Mizuhara, T., et al. (2015). The interplay of size and surface functionality on the cellular uptake. ACS Nano, 9, 9986–9993. https://doi.org/10.1021/acsnano.5b03521.

    Article  Google Scholar 

  23. Fratoddi, I., Venditti, I., Cametti, C., & Russo, M. V. (2015). How toxic are gold nanoparticles? The state-of-the-art. Nano Research, 8, 1771–1799. https://doi.org/10.1007/s12274-014-0697-3.

    Article  Google Scholar 

  24. Zhang, Q., Iwakuma, N., Sharma, P., et al. (2009). Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology, 20, 395102. https://doi.org/10.1088/0957-4484/20/39/395102.

    Article  Google Scholar 

  25. Huang, Y., Yu, F., Park, Y.-S., et al. (2010). Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials, 31, 9086–9091. https://doi.org/10.1016/j.biomaterials.2010.08.046.

    Article  Google Scholar 

  26. Bannunah, A. M., Vllasaliu, D., Lord, J., & Stolnik, S. (2014). Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Molecular Pharmaceutics, 11, 4363–4373. https://doi.org/10.1021/mp500439c.

    Article  Google Scholar 

  27. Harush-Frenkel, O., Rozentur, E., Benita, S., & Altschuler, Y. (2008). Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules, 9, 435–443. https://doi.org/10.1021/bm700535p.

    Article  Google Scholar 

  28. Cheng, X., Tian, X., Wu, A., et al. (2015). Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner. ACS Applied Materials & Interfaces, 7, 20568–20575. https://doi.org/10.1021/acsami.5b04290.

    Article  Google Scholar 

  29. Zhang, S., Gao, H., & Bao, G. (2015). Physical principles of nanoparticle cellular endocytosis. ACS Nano, 9, 8655–8671. https://doi.org/10.1021/acsnano.5b03184.

    Article  Google Scholar 

  30. Yen, H., Young, Y., Tsai, T., et al. (2018). Positively charged gold nanoparticles capped with folate quaternary chitosan: synthesis, cytotoxicity, and uptake by cancer cells. Carbohydrate Polymers, 183, 140–150. https://doi.org/10.1016/j.carbpol.2017.11.096.

    Article  Google Scholar 

  31. Deng, R., Shen, N., Yang, Y., et al. (2018). Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials, 167, 80–90. https://doi.org/10.1016/J.BIOMATERIALS.2018.03.013.

    Article  Google Scholar 

  32. Underhill, D. M., & Ozinsky, A. (2002). Phagocytosis of microbes: complexicity in action. Annual Review of Immunology, 20, 825–852. https://doi.org/10.1146/annurev.immunol.20.103001.114744.

    Article  Google Scholar 

  33. Mateo, D., Morales, P., Ávalos, A., & Haza, A. I. (2014). Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicology Mechanisms and Methods, 24, 161–172. https://doi.org/10.3109/15376516.2013.869783.

    Article  Google Scholar 

  34. Kosmidou, I., Vassilakopoulos, T., Xagorari, A., et al. (2002). Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. American Journal of Respiratory Cell and Molecular Biology, 26, 587–593. https://doi.org/10.1165/ajrcmb.26.5.4598.

    Article  Google Scholar 

  35. Pereira, D. V., Petronilho, F., Pereira, H. R. S. B., et al. (2012). Effects of gold nanoparticles on endotoxin-induced uveitis in rats. Investigative Ophthalmology & Visual Science, 53, 8036. https://doi.org/10.1167/iovs.12-10743.

    Article  Google Scholar 

  36. Parnsamut C, Brimson S (2015) Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-α production via MAPK pathway in leukemic cell lines. funpecrp.com.br. Genetics and Molecular Research, 14, 3650–3668. https://doi.org/10.4238/2015.April.17.15.

  37. Farrera, C., & Fadeel, B. (2015). It takes two to tango: understanding the interactions between engineered nanomaterials and the immune system. European Journal of Pharmaceutics and Biopharmaceutics, 95, 3–12. https://doi.org/10.1016/j.ejpb.2015.03.007.

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge financial support from the Thailand Research Fund (TRG5880024) and the Mekong Health Science Research Institute (MeHSRI), Khon Kaen University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patcharaporn Tippayawat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srijampa, S., Buddhisa, S., Ngernpimai, S. et al. Effects of Gold Nanoparticles with Different Surface Charges on Cellular Internalization and Cytokine Responses in Monocytes. BioNanoSci. 9, 580–586 (2019). https://doi.org/10.1007/s12668-019-00638-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00638-8

Keywords

Navigation