Skip to main content
Log in

Soret-Dufour Effects on Unsteady Flow of Convective Eyring-Powell Magneto Nanofluids over a Semi-Infinite Vertical Plate

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The aim of this paper is to study a two-dimensional free convective flow of Eyring-Powell Magneto nanofluid involving collective effects of thermal and mass diffusion with Soret-Dufour effects. The governing equations of the linear momentum, energy equation, and concentration are converted into non-dimensional non-linear ordinary differential equations with the facilitation of suitable group of similarity transformation. The transformed non-linear ordinary differential equations become coupled and numerically solved using the fifth-order Runge-Kutta-Fehlberg method in conjunction with the shooting technique by fitting proper boundary conditions. Computations are performed for many values of different governing parameters influencing the velocity, temperature, and concentration distributions, and obtained results are comprehensively analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

Species concentration

T :

Temperature in the boundary layer

C fx :

Local skin-friction coefficient

Nu x :

Local Nusselt number

Sh x :

Local Sherwood number

C :

Species concentration far away from the wall

T :

Temperature of the fluid far away from the wall

C p :

Specific heat at constant pressure

D :

Mass diffusivity

f :

Dimensionless stream function

g :

Acceleration due to gravity

h :

Heat transfer coefficient

Gr, Gc :

Grashof numbers due to temperature and concentration, respectively

m w :

Mass flux per unit area of the plate

q w :

Heat flux per unit area of the plate

Pr:

Prandtl number

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

Nb :

Brownian motion parameter

Nt :

Thermophoresis parameter

Le :

Lewis number

M :

Magnetic parameter

Sr :

Soret number

D f :

Dufour number

u, v :

Velocity component in the x and y directions

x, y :

Flow directional coordinate and normal to the stretching sheet

ψ :

Stream function

Δ :

Chemical reaction parameter

θ, φ :

Dimensionless temperature and concentration, respectively

ρ :

Density of the fluid

τ :

Ratio of effective heat capacity of the nanoparticle to the effective heat capacity of the fluid

μ :

Dynamic viscosity of the fluid

η :

Kinematic viscosity

C :

Concentration

T :

Temperature

w :

Conditions at the wall

∞:

Free stream condition

References

  1. De, P., Mondal, H., & Bera, U. K. (2016). Dual solutions of heat and mass transfer of nanofluid over a stretching/shrinking sheet with thermal radiation. Meccanica, 51(1), 117–124.

    Article  MathSciNet  MATH  Google Scholar 

  2. De, P., Mondal, H., & Bera, U. K. (2015). Effects of mixed convective flow of a nanofluid with internal heat generation, thermal radiation and chemical reaction. Journal of Nanofluids, 4(3), 375–384.

    Article  Google Scholar 

  3. De, P., Mondal, H., & Bera, U. K. (2015). Heat and mass transfer in a hydromagnetic nanofluid past a non-linear stretching surface with thermal radiation. Journal of Nanofluids, 4(2), 230–238.

    Article  Google Scholar 

  4. De, P., Pal, D., Mondal, H., & Bera, U. K. (2017). Effect of thermophoresis and Brownian motion on magnetohydrodynamic convective-radiative heat and mass transfer of a nanofluid over a nonlinear stretching sheet. Journal of Nanofluids, 6(1), 164–172.

    Article  Google Scholar 

  5. De, P., Mondal, H., & Bera, U. K. (2014). Influence of nanofluids on magnetohydrodynamic heat and mass transfer over a non-isothermal wedge with variable viscosity and thermal radiation. Journal of Nanofluids, 3(4), 391–398.

    Article  Google Scholar 

  6. Al Mahbub, Md A., Nasu, N. J., Aktar, S., Rahman, Z. (2013). Soret-Dufour effects on the MHD flow and heat transfer of microrotation fluid over a nonlinear stretching plate in the presence of suction-applied mathematics. 4:864–875.

  7. Pal, D., & Mondal, H. (2014). Soret-Dufour effects on hydromagnetic non-Darcy convective-radiative heat and mass transfer over a stretching sheet in porous medium with viscous dissipation and Ohmic heating. Journal of Applied Fluid Mechanics, 7(3), 513–523.

    Google Scholar 

  8. Srinivasacharya, D., Mallikarjuna, B., & Bhuvanavijaya, R. (2015). Soret and Dufour effects on mixed convection along a vertical wavy surface in a porous medium with variable properties. Ain Shams Engineering Journal, 6, 553–564.

    Article  MATH  Google Scholar 

  9. Gaffar, S. A., Prasad, V. R., & Reddy, E. K. (2016). MHD free convection flow of Eyring–Powell fluid from vertical surface in porous media with Hall/ionslip currents and ohmic dissipation. Alexandria Engineering Journal, 55, 875–905.

    Article  Google Scholar 

  10. Ur, R. K., Malik, M. Y., Salahuddin, T., & Naseer, M. (2016). Dual stratified mixed convection flow of Eyring-Powell fluid over an inclined stretching cylinder with heat generation/absorption effect. AIP Advances, 6, 075112.

    Article  Google Scholar 

  11. De, P. (2017). Thermophoresis and Brownian motion effects on dual solutions for unsteady Eyring–Powell nanofluid flow over a stretching/shrinking sheet. Journal of Nanofluids, 6(5), 956–959.

    Article  Google Scholar 

  12. Ibrahim, F., Elaiw, A. M., & Bakr, A. A. (2008). Effect of chemical reaction and radiation absorption on the unsteady MHD free convection flow past a semi infinite vertical permeable moving plate with heat source and suction. Communications in Nonlinear Science and Numerical Simulation, 13, 1056–1066.

    Article  MathSciNet  MATH  Google Scholar 

  13. Shah, N. A., Ahmed, N., Einaqeeb, T., & Rashidi, M. M. (2018). Magnetohydrodynamics free convection flows with thermal memory over a moving vertical plate in porous medium. Journal of Applied and Computational Mechanics. https://doi.org/10.22055/JACM.2018.25682.1285 ARTICLE IN PRESS.

  14. Shah, N. A., Elnaqeeb, T., & Wang, S. (2018). Effects of Dufour and fractional derivative on unsteady natural convection flow over an infinite vertical plate with constant heat and mass fluxes. Computational and Applied Mathematics, 37, 4931–4943.

    Article  MathSciNet  MATH  Google Scholar 

  15. Shah, N. A., Elnaqeeb, T., Animasaun, I. L., & Mahsud, Y. (2018). Insight into the natural convection flow through a vertical cylinder using Caputo time fractional derivatives. International Journal of Applied and Computational Mathematics, 4(3), 80.

    Article  MathSciNet  MATH  Google Scholar 

  16. Krishna, P. M., Sandeep, N., Reddy, J. V. R., & Sugunamma, V. (2016). Dual solutions for unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Journal of Naval Architecture and Marine Engineering, 13, 89–99.

    Article  Google Scholar 

  17. Ishak, A., Nazar, R., & Pop, I. (2008). Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat and Mass Transfer, 44, 921–927.

    Article  Google Scholar 

  18. Chen, C. H. (1998). Laminar mixed convection adjacent to vertical continuously stretching sheets. Heat and Mass Transfer, 33, 471–476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poulomi De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, P. Soret-Dufour Effects on Unsteady Flow of Convective Eyring-Powell Magneto Nanofluids over a Semi-Infinite Vertical Plate. BioNanoSci. 9, 7–12 (2019). https://doi.org/10.1007/s12668-018-0583-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0583-7

Keywords

Navigation