Skip to main content

Advertisement

Log in

Ecofriendly Biosynthesis of Zinc Oxide and Magnesium Oxide Particles from Medicinal Plant Pisonia grandis R.Br. Leaf Extract and Their Antimicrobial Activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this study, we report the ecofriendly biosynthesis of ZnO and MgO nanoparticles using Pisonia grandis R. Br. Leaf extract for possible applications as biomaterials and electronic materials. GC-MS results proved some of the phytocompounds were present in the ethanol extract of plant material. The successful formation of zinc oxide and magnesium oxide particles has been confirmed by FTIR, XRD, SEM, EDX, and PSA analysis. XRD analysis showed that the ZnO particles were hexagonal phase and MgO particles as face-centered cubic geometry. A plausible formation mechanism was also predicted. Antimicrobial efficacy evaluations of biosynthesized ZnO and MgO nanoparticles against Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (gram-positive bacteria) and Escherichia coli, Salmonella paratyphi, Klebsiella pneumonia (gram-negative bacteria) and fungal strains Aspergillus Niger and Candida albicans. M. luteus and K. pneumonia exhibited good antibacterial behaviors compared to the other bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang, M., Liu, M., Prest, H., & Fischer, S. (2008). Nanoparticles secreted from ivy rootlets for surface climbing. Nano Letters, 8, 1277–1280.

    Article  Google Scholar 

  2. Jeong, S., Yeo, S., & Yi, S. (2005). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science, 40, 5407.

    Article  Google Scholar 

  3. Savithramma, N., Lingarao, M., Rukmini, K., & Suvarnalatha, D. P. (2011). Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. International Journal of Chemical Technological Research, 3, 1394–1402.

    Google Scholar 

  4. Jha, A. K., Kumar, V., & Prasad, K. (2011). Biosynthesis of metal and oxide nanoparticles using orange juice. Journal of Bio Nanoscience, 5(2), 162–166.

    Google Scholar 

  5. Yu, J., Yang, J., Liu, B., & Ma, X. (2009). Preparation and characterization of glycerol plasticized-pea starch/ ZnO – carboxy methyl cellulose sodium nanocomposites. Bio Resource Technology, 100, 2832–2841.

    Article  Google Scholar 

  6. Tomczak, M. M., Gupta, M. K., Drummy, L. F., Rozenbak, S. M., & Naik, R. R. (2009). Morphological control and assembly of zinc oxide using biotemplate. Acta Biomaterialia, 5, 876–882.

    Article  Google Scholar 

  7. Vidya, C., Shilpa Hiremath, M. N., Chandra Prabha, M. A., Antony raj, L., VenuGopal, I., Jain, A., & Bansali, K. (2013). Green synthesis of zinc oxide nanoparticles by Calotropis gigantean. International Journal of Current Engineering and Technology, 118–120.

  8. Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46, 2560–2566.

    Article  Google Scholar 

  9. Ferracane, L., & Jack. (2001). Materials in density: principles and applications. Lippincott Williams & Wilkins.

  10. Richard, V. N. (2002). Introduction to dental materials, 2nd edn. Elsevier Health Science.

  11. Salem, J. K., El-Nahhal, I. M., Hammad, T. M., Kuhn, S., Sharekh, S. A., ElAskalani, M., & Hempelmann, R. (2015). Optical and fluorescence properties of MgO nanoparticles in micellar solution of hydroxyethyl laurdimonium chloride. Chemical Physics Letters, 636, 26–30.

    Article  Google Scholar 

  12. Mirzaei, H., & Davoodnia, A. (2012). Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chinese Journal of Catalysis, 33, 1502–1507.

    Article  Google Scholar 

  13. Sushma, N. J., Prathyusha, D., Swathi, G., Madhavi, T., Deva Prasad Raju, B., Mallikarjuna, K., & Kim, H.-S. (2015). Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea -characterization and in vitro antioxidant studies. Applied Nanoscience, 1–8.

  14. Moorthy, S. K., Ashok, C. H., Venkateswara Rao, K., & Viswanathan, C. (2015). Synthesis and characterization of MgO nanoparticles by neem leaves through green method. Materials Today Proceedings, 2, 4360–4368.

    Article  Google Scholar 

  15. Kumar, D., Reddy Yadav, L. S., Lingaraju, K., Manjunath, K., Suresh, D., Prasad, D., Nagabhushana, H., Sharma, S. C., Raja Naika, H., Chikkahanumantharayappa, & Nagaraju, G. (2015). Combustion synthesis of MgO nanoparticles using plant extract: structural characterization and photoluminescence studies. AIP Conference Proceedings, 1665, 050145.

  16. Sugirtha, P., Divya, R., Yedhukrishnan, R., Suganthi, K. S., Anusha, N., Ponnusami, V., & Rajan, K. S. (2015). Green synthesis of magnesium oxide nanoparticles using brassica oleracea and punica granatum peels and their anticancer and photocatalytic activity. Asian Journal of Chemistry, 27(7), 2513–2517.

    Article  Google Scholar 

  17. Awwad, A. M., & Ahmad, A. L. (2014). Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nanoflakes using Citrus limon leaf extract. Arabian Journal of Physical Chemistry, 1(2), 66.

    Google Scholar 

  18. Suresh, J., Yuvakkumar, R., Sundrarajan, M., & Hong, S. I. (2014). Green synthesis of magnesium oxide nanoparticles. Advanced Materials Research, 952, 141–144.

    Article  Google Scholar 

  19. Kritikar, K. R., & Basu, B. D. (1994). Indian Medicinal plants. Dehradun: International book distributors book sellers & publishers, (vol II, pp. 1561–1564).

  20. Jayakumari, S., Arthanareswaran, A., Vijayalakshmi, A., Velraj, M., & Ravichandran, V. (2012). Free radicalscavenging activity of Pisoniagrandis R. Br leaves. Indian Journal of Pharmaceutical Education Research, 46, 37–40.

    Google Scholar 

  21. Jayakumari, S., Velraj, M., Vijayalakshmi, A., & Arthanarieswaran, A. (2011). Pharmacognostical studies on the leaves of Pisonia grandis R. Br. Research in Journal of Pharmaceutical and Biological Chemical Science, 2, 193–199.

    Google Scholar 

  22. Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leafextract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science and Semiconductor Process, 34, 365–372.

    Article  Google Scholar 

  23. Ranganathan, D. (2014). Phytochemical analysis of Caralluma nilagiriana using GC-MS. Journal of Pharmacology and Phytochemistry, 3(1), 155–159.

    MathSciNet  Google Scholar 

  24. Dool, H. V. D., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography, 11, 463–471.

    Article  Google Scholar 

  25. Clarke, E. C. G. (1970). The forensic chemistry of alkaloids. In H. F. Manske (Ed.), the Alkaloids (Vol. XII, pp. 514–590). New York: Academic Press.

    Google Scholar 

  26. Marbry, T. J., Markham, K. R., & Thomas, M. B. (1970). The systematic identification of flavonoids. Berlin: Springer-Verlag.

    Book  Google Scholar 

  27. Harborne, J. B. (1964). Biochemistry of phenolic compounds. London: Academic Press.

    Google Scholar 

  28. Egwaikhide, P. D., & Gimba, C. E. (2007). Analysis of the phytochemical content and antimicrobial activity of Plectranthus glandulosus whole plant. Middle-East Journal of Scientific Research, 2, 135–138.

    Google Scholar 

  29. Ugochukwu, S. C., Arukwe Uche, I., & Ifeanyi, O. (2013). Preliminary phytochemical screening of different of stem bark and roots of Dennetia tripetala G. Baker. Asian Journal of Plant Science and Research, 3, 10–13.

    Google Scholar 

  30. Pradheesh, G., Suresh, S., & Alexramani, V. (2015). Phytochemical and gc-ms analysis of methanolic extract of pisonia grandis R. Br. International Journal of Chemical Sciences, 13(3), 1295–1304.

    Google Scholar 

  31. Harada, H., Yamashita, U., Kurihara, H., Fukushi, E., Kawabata, J., & Kamei, Y. (2002). Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Research, 22(5), 2587–2590.

    Google Scholar 

  32. Liu, J., Shimizu, K., & Kondo, R. (2009). Antiandrogenic activity of fatty acids. Chemistry & Biodiversity, 6(4), 503–512.

    Article  Google Scholar 

  33. Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti-inflammatory property of nhexadecanoic acid: structural evidence and kinetic assessment. Chemical Biological Drug Research, 80(3), 434–439.

    Article  Google Scholar 

  34. Sheba, D. W., Saxena, R. K., & Gupta, R. (1999). The fungistatic action of oleic acid. Current Science, 76(8), 1137–1139.

    Google Scholar 

  35. Komiya, T., Kyohkon, M., Ohwaki, S., Eto, J., Katsuzaki, H., Imai, K., Kataoka, T., Yoshioka, K., Ishii, Y., & Hibasami, H. (1999). Phytol induces programmed cell death in human lymphoid leukemia Molt 4B cells. International Journal of Molecular Medicine, 4(4), 377–457.

    Google Scholar 

  36. Inoue, Y., Hada, T. A., Shiraishi, K., Hirore, H., Hamashima, S., & Kobayashi. (2005). Biphasic effects of geranylgeraniol, terpenone and phytol on the growth of Staphylococcus aureus. Antimicrobial agent and Chemotherapy, 49(5), 1770–1774.

    Article  Google Scholar 

  37. Gnanasangeetha, D., & Thambavani, S. D. (2014). Facile and ecofriendly method for the synthesis method for the synthesis of zinc oxide nanoparticles using azadirachta and emblica. International Journal of Pharmaceutical Science and Research, 5(7), 2866–2873.

    Google Scholar 

  38. Saputra, I. S., & Yulizar, Y. (2017). Biosynthesis and characterization of ZnO nanoparticles using the aqueous leaf extract of Imperata cylindrica L. IOP Conference Series: Materials Science and Engineering, 188, 012004.

    Article  Google Scholar 

  39. Anand raj, L. F. A., & Jayalakshmy, E. (2015). Biosynthesis and characterization of zinc oxide nanoparticles using root extract of zingiber officinale. Oriental Journal of Chemistry, 31(1), 51–56.

    Article  Google Scholar 

  40. Sharma, G., Soni, R., & Jasuja, N. D. (2017). Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. Journal of Taibah University for Science, 11, 471–477.

    Article  Google Scholar 

  41. Anantharaman, A., Sathyabhama, S., & George, M. (2016). Green synthesis of magnesium oxide nanoparticles using aloe vera and its applications. International Journal for Scientific Research and Development, 4, 9.

    Google Scholar 

  42. Iravani, S. (2011). Green Chemistry, 13, 2638–2650.

    Article  Google Scholar 

  43. Shubashini, K. S., Poongothai, G., & Lalitha, P. (2011). HPTLC method of quantitation of bioactive marker constituent pinitol in extracts of Pisonia grandis (R. Br). International Research Journal of Pharmacy, 2(6), 815–817.

    Google Scholar 

  44. Shubashini, K. S., Poongothai, G., & Lalitha, P. (2011). Anti diabetic agent Pinitol from the leaves of Pisonia grandis (R.Br.). Journal of Natural Remediation, 11(1), 39–43.

    Google Scholar 

  45. Kumar, N. R., Reddy, J. S., Gopikrishna, G., & Solomon, K. A. (2012). GC-MS determination of bioactive constituents of Cycas beddomei cones. International Journal of Pharmaceutical Biological Sciences, 3(3), 344–350.

    Google Scholar 

  46. Jannathul Firdhouse, M., Lalitha, P., Shubashini, K., & Sripathi. (2012). Novel synthesis of silver nanoparticles using leaf ethanol extract of Pisonia grandis (R. Br). Der Pharma Chemica, 4(6), 2320–2326.

    Google Scholar 

  47. Jannathul Firdhouse, M., Lalitha, P., & Sripathi, S. K. (2014). An undemanding method of synthesis of gold nanoparticles using pisonia grandis (R.Br). Digest Journal of Nanomaterials and Biostructures, 9(1), 385–393.

    Google Scholar 

  48. Vijayalakshmi, R., & Rajendran, V. (2012). Synthesis and characterization of nano-TiO2 via different methods. Archives of Applied Science and Research, 4(2), 1183–1190.

    Google Scholar 

  49. Rizwan, W., Young-Soon, K., Amrita, M., Soon-Il, Y., & HyungShik, S. (2010). Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Journal of Nanoscale Research Letters, 5, 1675–1681.

    Article  Google Scholar 

  50. Sunita, J., Suresh, G., Madhav, N., & Anjali, R. (2011). Copper oxide nanoparticles, synthesis, characterization and their antibacterial activity. Journal of Cluster Science, 22, 121–129.

    Article  Google Scholar 

  51. Hamouda, T., Myc, A., Donovan, B., Shih, A. Y., Reuter, J. D., & Baker, J. R. (2001). A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Research in Microbiology, 156, 1–7.

    Article  Google Scholar 

  52. Dibrov, P., Dzioba, J., Gosink, K. K., & Hase, C. C. (2002). Mechanism of antimicrobial activity of ag (+) in Vibrio cholera. Antimicrobial Agents and Chemothearphy, 46, 2668–2670.

    Article  Google Scholar 

  53. Dragieva, I., Stoeva, S., Stoimenov, P., Pavlikianov, E., & Klabunde, K. (1999). Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process. Nanostructure Materials, 12, 267–270.

    Article  Google Scholar 

  54. Sharmila, G., Muthukumaran, C., Sandiya, K., Santhiya, S., Sakthi Pradeep, R., Manoj Kumar, N., Suriyanarayanan, N., & Thirumarimurugan, M. (2018). Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry, 8, 293–299.

    Article  Google Scholar 

  55. Ibrahem, E. J., Thalij, K. M., Saleh, M. K., & Badawy, A. S. (2017). Biosynthesis of zinc oxide nanoparticles and assay of antibacterial activity (2017). American Journal of Biochemistry and Biotechnology, 13(2), 63.69.

    Article  Google Scholar 

Download references

Funding

This research was supported by the Future Material Discovery Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (MSIP) of Korea (2016M3D1A1023532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Ig Hong.

Electronic supplementary material

ESM 1

(DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joghee, S., Ganeshan, P., Vincent, A. et al. Ecofriendly Biosynthesis of Zinc Oxide and Magnesium Oxide Particles from Medicinal Plant Pisonia grandis R.Br. Leaf Extract and Their Antimicrobial Activity. BioNanoSci. 9, 141–154 (2019). https://doi.org/10.1007/s12668-018-0573-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0573-9

Keywords

Navigation