Skip to main content
Log in

Bioelectrochemical Systems as Technologies for Studying Drug Interactions Related to Cytochrome P450

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The electrocatalytic activity of cytochrome P450 3A4 as the main enzyme of drug metabolism was studied. Cytochrome P450 electrodes allowed to register 10−11–10−12 mol of enzyme/electrode. The study has shown that the developed electrochemical systems based on cytochromes P450 are effective non-invasive models for the analysis of drug–drug interactions at the level of biotransformation of xenobiotics. The effect of clinically significant drug combinations on the activity of cytochrome P450 3A4 was studied. The electroanalytical response of cytochrome P450 3A4 enzyme was interpreted in terms of its impact on drug interference and assessment of heme protein activity. The results can be used for modulation of cytochrome P450 activity in case of comorbid patients with polypharmacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lewis, D. F. . V. (2001). Guide to cytochromes P450: structure and function. London: Taylor & Francis.

  2. Ortiz de Montellano, P. R. (2005). Cytochrome P450: structure, mechanism, and biochemistry. New York: Kluwer Academic/Plenum Publishers.

    Book  Google Scholar 

  3. Hrycay, E. G., & Bandiera, S. M. (2012). The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Archives of Biochemistry and Biophysics, 522, 71–89.

    Article  Google Scholar 

  4. Nebert, D. W., & Russel, D. W. (2002). Clinical importance of the cytochromes P450. The Lancet, 360, 1155–1162.

    Article  Google Scholar 

  5. Guengerich, F. P. (2018). Reference module in biomedical sciences. Comprehensive Toxicology (Third Edition), 10 10.04, 54-86. Cytochrome P450 enzymes.

  6. Ferdousi, R., Safdari, R., & Omidi, Y. (2017). Computational prediction of drug-drug interactions based on drugs functional similarities. Journal of Biomedical Informatics, 70, 54–64.

    Article  Google Scholar 

  7. Bezhentsev, V. M., Tarasova, O. A., Dmitriev, A. V., Rudik, A. V., Lagunin, A. A., Filimonov, D. A., & Poroikov, V. V. (2016). Computer prediction of metabolic pathways of xenobiotics in the human body. Successes in Chemistry, 85, 854–879.

    Google Scholar 

  8. Tarasova, O., Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D., & Poroikov, V. (2017). QNA-based prediction of sites of metabolism. Molecules, 22, 2123.

    Article  Google Scholar 

  9. Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery, 3, 673–683.

    Article  Google Scholar 

  10. Murtazalieva, K. A., Druzhilovskiy, D. S., Goel, R. K., Sastry, G. N., & Poroikov, V. V. (2017). How good are publicly available web services that predict bioactivity profiles for drug repurposing? SAR and QSAR in Environmental Research, 28, 843–862.

    Article  Google Scholar 

  11. Kennedy, C., Brewer, L., & Williams, D. (2016). Drug interactions. Clinical Pharmacology, Medicine, 44(7), 422–426.

    Google Scholar 

  12. Carrara, S., Cavallini, A., Erokhin, V., De Micheli, G. (2011). Multi-panel drugs detection in human serum for personalized therapy. Biosensors and Bioelectronics, 26, 3914–3919.

  13. Zhang, L., Reynolds, K. S., Zhao, P., & Huang, S.-M. (2010). Drug interactions evaluation: an integrated part of risk assessment of therapeutics. Toxicology and Applied Pharmacology, 243, 134–145.

    Article  Google Scholar 

  14. Kim, H. J., Kim, I. S., Rehman, S. U., Ha, S. K., Nakamura, K., & Yoo, H. H. (2017). Effects of 6-paradol, an unsaturated ketone from gingers, on cytochrome P450-mediated drug metabolism. Bioorganic and Medicinal Chemistry, 27, 1826–1830.

    Article  Google Scholar 

  15. Schneider, E., & Clark, D. S. (2013). Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosensors and Bioelectronics, 39, 1–13.

    Article  Google Scholar 

  16. Shumyantseva, V. V., Shich, E. V., Makhova, A. A., Bulko, T. V., Kukes, V. G., Sizova, O. S., Ramenskaya, G. V., Usanov, S. A., & Archakov, A. I. (2012). The influence of B group vitamins on monooxygenase activity of cytochrome P450 3A4: pharmacokinetics and electro analysis of the catalytic properties. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 6, 87–93.

    Article  Google Scholar 

  17. Makhova, A. A., Shumyantseva, V. V., Shich, E. V., Bulko, T. V., Kukes, V. G., Sizova, O. S., Ramenskaya, G. V., Usanov, S. A., & Archakov, A. I. (2011). Electroanalysis of cytochrome P450 3A4 catalytic properties with nanostructured electrodes: The influence of vitamins B group on diclofenac metabolism. BioNanoScience, 1, 46–52.

    Article  Google Scholar 

  18. Shich, E. V., Fomin, E., Shumyantseva, V. V., & Bulko, T. V. (2012). Combined therapy of elderly patients taking into account the metabolism of drugs. Clinical gerontology, 18, 54–58.

    Google Scholar 

  19. Gilep, A. A., Guryev, O. L., Usanov, S. A., & Estabrook, R. W. (2001). Apo-cytochrome b5 as an indicator of changes in heme accessability: preliminary studies with cytochrome P450 3A4. Journal of Inorganic Biochemistry, 87(4), 237–244.

    Article  Google Scholar 

  20. Omura, T., & Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes I: evidence for its hemoprotein nature. Journal of Biological Chemistry, 239, 2370–2378.

    Google Scholar 

  21. Shumyantseva, V. V., Makhova, A. A., Bulko, T. V., Kuzikov, A. V., Shich, E. V., Suprun, E. V., Kukes, V. G., Usanov, S. A., & Archakov, A. I. (2013). The dose-dependent influence of vitamins with antioxidant properties on electrochemically driven cytochromes P450 catalysis. Oxidants and Antioxidants in Medical Science, 2, 113–117.

    Article  Google Scholar 

  22. Smirnov, V. V., Savchenko, A. Y., & Ramenskaya, G. V. (2010). Development and validation of the quantitative determination of endogenous cortisol and 6-β-hydroxycortisol in urine in order to determine the activity of the CYP 3A4 isoenzyme. Biomedicine, 4, 56–60.

    Google Scholar 

  23. Fantuzzi, A., Mak, L. H., Capria, E., Dodhia, V., Panicco, P., Collins, S., & Gilardi, G. (2011). A new standardised electrochemical array for drug metabolic profiling with human cytochromes P450. Analytical Chemistry, 83, 3831–3839.

    Article  Google Scholar 

  24. Shumyantseva, V. V., Makhova, A. A., Bulko, T. V., Kuzikov, A. V., Shich, E. V., Kukes, V. G., & Archakov, A. I. (2015). Electrocatalytic cycle of P450 cytochromes: the protective and stimulating roles of antioxidants. RSC Advances, 5, 71306–71313.

    Article  Google Scholar 

  25. Shumyantseva, V. V., Makhova, A. A., Bulko, T. V., Bernhardt, R., Kuzikov, A. V., Shich, E. V., Kukes, V. G., & Archakov, A. I. (2015). Taurine modulates catalytic activity of cytochrome P450 3A4. Biochemistry (Moscow), 80, 366–373.

    Article  Google Scholar 

  26. Polasek, T. M., & Miners, J. O. (2006). Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate. European Journal of Clinical Pharmacology, 62, 203–208.

    Article  Google Scholar 

  27. Calabresi, L., Pazzucconi, F., Ferrara, S., Di Paolo, A., Tacca, M. D., Sirtori, C. (2004). Pharmacokinetic interactions between omeprazole/pantoprazole and clarithromycin in health volunteers. Pharmacological Research, 49, 493–499.

  28. Shumyantseva, V. V., Bulko, T. V., Suprun, E. V., Kuzikov, A. V., Agafonova, L. E., & Archakov, A. I. (2015). Electrochemical methods for biomedical investigations. Biomedical Chemistry, 61, 188–202.

    Google Scholar 

  29. Kuzikov, A. V., Masamrekh, R. A., Khatri, Y., Zavialova, M. G., Bernhardt, R., Archakov, A. I., & Shumyantseva, V. V. (2016). Scrutiny of electrochemically-driven electrocatalysis of C-19 steroid 1α-hydroxylase (CYP260A1) from Sorangium cellulosum So ce56. Analytical Biochemistry, Academic Press, 513, 28–35.

    Article  Google Scholar 

  30. Shumyantseva, V. V., Bulko, T. V., Kuznetsova, G. P., Samenkova, N. F., & Archakov, A. I. (2009). Electrochemistry of cytochromes P450: analysis of current-voltage characteristics of electrodes with immobilized cytochromes P450 for the screening of substrates and inhibitors. Biochemistry (Moscow), 74, 438–444.

    Article  Google Scholar 

  31. Sadeghi, S., Ferrero, S., Di Nardo, G., & Gilardi, G. (2012). Drug–drug interactions and cooperative effects detected in electrochemically driven human cytochrome P450 3A4. Bioelectrochemistry, 86, 87–91.

    Article  Google Scholar 

  32. Yasui, H., Hayashi, S., & Sakurai, H. (2005). Possible involvement of singlet oxygen species as multiple oxidants in P450 catalytic reactions. Drug Metabolism and Pharmacokinetics, 20, 1–13.

    Article  Google Scholar 

  33. Akiyoshi, T., Ito, M., Murase, S., Miyazaki, M., Guengerich, F. P., Nakamura, K., Yamamoto, K., & Ohtani, H. (2013). Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metabolism and Pharmacokinetics, 28, 411–415.

  34. Sekiguchi, N., Higashida, A., Kato, M., Nabuchi, Y., Mitsui, T., Takanashi, K., Aso, Y., & Ishigai, M. (2009). Prediction of drug-drug interactions based on time-dependent inhibition from high throughput screening of cytochrome P450 3A4 inhibition. Drug Metabolism and Pharmacokinetics, 24, 500–510.

    Article  Google Scholar 

  35. Berg-Candolfi, M., & Candolfi, E. (1996). Depression of the N-demethylation of erythromycin, azithromycin, clarithromycin and clindamycin in murine toxoplasma infection. International Journal for Parasitology, 26, 1321–1323.

    Article  Google Scholar 

  36. Welsh, O., Vera-Cabrera, L., & Welsh, E. (2010). Onychomycosis Clinics in Dermatology, 28, 151–159.

  37. Venkatakrishnan, K., von Moltke, L. L., Greenblatt, D, J. (2000). Effects of the antifungal agents on oxidative drug metabolism. Clinical Pharmacokinetics , 38, 111–180.

  38. Krasulova, K., Dvorak, Z., & Anzenbacher, P. (2018). In vitro analysis of itraconazole cis-diastereoisomers inhibition of the nine cytochrome P450 enzymes: stereoselective inhibition of CYP3A. Xenobiotica, 22, 1–7.

    Google Scholar 

  39. Baj-Rossi, C., Müller, C., von Mandach, U., De Micheli, G., Carrara, S. (2015) Faradic peaks enhanced by carbon nanotubes in microsomal cytochrome P450 electrodes. Electroanalysis, 27, 1507–1515.

  40. Joseph, S., Rusling, J. F., Lvov, Y. M., Friedberg, T., & Fuhr, U. (2003). An amperometric biosensor with human CYP3A4 as a novel drug-screening tool. Biochemical Pharmacology, 65, 1817–1826.

    Article  Google Scholar 

  41. Kuzikov, A. V., Masamreh, R. A., Bulko, T. V., Makhova, A. A., Archakov, A. I., Usanov, S. A., Shich, E. V., & Shumyantseva, V. V. (2016). Analysis of the influence of meldonia on the catalytic activity of cytochrome P450 3A4. Bulletin of the Russian State Medical University, 6, 10–15.

    Article  Google Scholar 

  42. Bogdan, A. N. (2010). Azafen: application in modern clinical practice. Psychiatry and psychopharmacotherapy, 12, 20–23 (in Russian).

    Google Scholar 

  43. Otdelenov, V. A., Smirnov, V. V., Dmitriev, A. V., Poryokov, V. V., Shumyantseva, V. V., Krasnykh, L., Sychev, D., Kukes, V. Influence of ethylmethylhydroxypyridine malate on the activity of CYP3A4: an integrated approach to assessing the effect on the biotransformation system of drugs. Medications and rational pharmacotherapy, 3, 30–36 (in Russian).

  44. Sizova, O. S., Potekayev, N. N., Zhukovsky, R. O., & Shikh, E. V. (2011). Opportunities for reducing hepatotoxicity of itraconazole in combination with taurine in patients with onychomycosis. Clinical Dermatology and Venerology, 1, 45–49 (in Russian).

    Google Scholar 

  45. Kuzikov, A. V., Masamrekh, R. A., Archakov, A. I., Shumyantseva, V. V. (2018) Methods for determination of functional activity of cytochrome P450 isoenzymes, Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 12, 220–240.

  46. Letelier, M., Sandoval, J., Berrнos, A.-M., Faundez, M., Aracena-Parks, P., & Aguilera, F. (2010). Melatonin protects the cytochrome P450 system through a novel antioxidant mechanism. Chemico-Biological Interactions, 185, 208–214.

    Article  Google Scholar 

  47. Zhang, Z., & Tang, W. (2018). Drug metabolism in drug discovery and development. Acta Pharmaceutica Sinica B, 8, 721–732.

    Article  Google Scholar 

  48. Shumyantseva, V. V., Masamrekh, R. A., Kuzikov, A. V., & Archakov, A. I. (2018). From electrochemistry to enzyme kinetics of cytochrome P450. Biosensors and Bioelectronics, 21, 192–204.

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was supported by Russian Fund of Fundamental Research (RFBR), research project No. 18-04-00374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria V. Shumyantseva.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumyantseva, V.V., Makhova, A.A., Shikh, E.V. et al. Bioelectrochemical Systems as Technologies for Studying Drug Interactions Related to Cytochrome P450. BioNanoSci. 9, 79–86 (2019). https://doi.org/10.1007/s12668-018-0567-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0567-7

Keywords

Navigation