Skip to main content
Log in

The Influence of Hindlimb Unloading on the Bone Tissue’s Structure

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The results of numerous studies indicate interactions between antiortostatic support and bone’s tissue. It is known that mechanical, genetic, endocrine, and age-related factors can influence the bones at the same time. Nevertheless, the physiological and pathological mechanisms of interconnection between unloading hindlimb and bones are largely unclear. The purpose of this study is to evaluate the correlation between unloading hindlimb and changes in bone’s tissue. After unloading of the hindlimb during 14 days, femoral bones were collected in order to evaluate the weight, density, and geometrical bone parameters. Additionally, a test with a three-point bending and computed tomography scanning was carried out. Using computed tomography data, fabric tensor was built. From the assumption that the bone tissue is orthotropic (exists a maximum of three mutually orthogonal axes with different material properties), we performed this analysis. Orthotropic properties of the bone tissue were analyzed in assumption that the principal direction of the fabric tensor is coaxial with the axes of orthotropy of the material. It was found that the axes of orthotropy of the bone tissue in the cross section are mostly directed in tangent direction, and after hindlimb unloading, axes of orthotropy rotate 90° (became directed in radial direction). Anisotropy ratio in the cross section changes significantly. Meanwhile, Young’s modulus and ultimate strength decrease. It shows that unloading of the hindlimb aggravates quality of the bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baltina, T., Ahmetov, N., Sachenkov, O., Fedyanin, A., & Lavrov, I. (2017). The influence of hindlimb unloading on bone and muscle tissues in rat model. BioNanoScience., 7(1), 67–69.

    Article  Google Scholar 

  2. Richardson CA. The health of the human skeletal system for weight bearing against gravity: The role of deloading the musculo-skeletal system in the development of musculoskeletal injury. Journal of Gravitational Physiology 2002;9(1):P7–10.

  3. Fitts, R. H., Riley, D. R., & Widrick, J. J. (2001). Functional and structural adaptations of skeletal muscle to microgravity. The Journal of Experimental Biology, 204(Pt 18), 3201–3208.

    Google Scholar 

  4. Kuznetsov, M. V. Effect of vibrostimulation of foot and supporting afferentation on functional state of shin muscles in rats during hindlimb unloading/M. V. Kuznetsov, M. E. Baltin, A. O. Fedyanin, A. A. Eremeyev, and T. V. Baltina// Biophysics, 2014. V. 59, No 5. P. 806–809.

    Article  Google Scholar 

  5. Shirazi-Fard, Y., Kupke, J. S., Bloomfield, S. A., & Hogan, H. A. (2013). Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone, 52(1), 433–443.

    Article  Google Scholar 

  6. Bonewald, L. F., Kiel, D. P., Clemens, T. L., Esser, K., Orwoll, E. S., O'Keefe, R. J., & Fielding, R. A. (2013). Forum on bone and skeletal muscle interactions: Summary of the proceedings of an ASBMR workshop. Journal of Bone and Mineral Research, 28(9), 1857–1865.

    Article  Google Scholar 

  7. Lloyd, S. A., Lang, C. H., Zhang, Y., Paul, E. M., Laufenberg, L. J., Lewis, G. S., & Donahue, H. J. (2014). Interdependence of muscle atrophy and bone loss induced by mechanical unloading. Journal of Bone and Mineral Research, 29(5), 1118–1130. https://doi.org/10.1002/jbmr.2113.

    Article  Google Scholar 

  8. Morey-Holton, E. R. (2002). Hindlimb unloading rodent model: Technical aspects [text]/ E.R. Morey-Holton, R.K. Globus. Journal of Applied Physiology, 92(4), 1367–1377.

    Article  Google Scholar 

  9. Sachenkov, O., Kharislamova, L., Shamsutdinova, N., Kirillova, E., & Konoplev, Y. (2015). Evaluation of the bone tissue mechanical parameters after induced alimentary Cu-deficiency followed by supplementary injection of Cu nanoparticles in rats. IOP Conference Series: Materials Science and Engineering, 98, 012015. https://doi.org/10.1088/1757-899X/98/1/012015.

    Article  Google Scholar 

  10. Harrigan, T. P., & Mann, R. W. (1984). Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. Journal of Materials Science, 19, 761–767.

    Article  Google Scholar 

  11. Shertzer R.H. Fabric tensors and effective properties of granular materials with application to snow. Dissertation of Doctor of Philosophy in Engineering 2011. 278.

  12. Gross, T., Pahr, D. H., & Zysset, P. K. (2013). Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations. Biomechanics and Modeling in Mechanobiology., 12(4), 793–800.

    Article  Google Scholar 

  13. Maquer, G., Musy, S. N., Wandel, J., Gross, T., & Zysset, P. K. (2015). Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. Journal of Bone and Mineral Research., 30(6), 1000–1008.

    Article  Google Scholar 

  14. Gross, T., Pahr, D. H., Peyrin, F., & Zysset, P. K. (2012). Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: A SRμCT-based finite element study. Computer Methods in Biomechanics and Biomedical Engineering., 15(11), 1137–1144.

    Article  Google Scholar 

  15. Pahr, D. H., & Zysset, P. K. (2009). A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. Journal of Biomechanics, 42(4), 455–462.

    Article  Google Scholar 

Download references

Funding

This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities no. 7.9783.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Baltina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltina, T., Sachenkov, O., Gerasimov, O. et al. The Influence of Hindlimb Unloading on the Bone Tissue’s Structure. BioNanoSci. 8, 864–867 (2018). https://doi.org/10.1007/s12668-018-0551-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0551-2

Keywords

Navigation