Skip to main content
Log in

Green Synthesis of Silver Nanoparticles (AgNPs) from Lenzites betulina and the Potential Synergistic Effect of AgNP and Capping Biomolecules in Enhancing Antioxidant Activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Properties of silver nanoparticles (AgNPs) are influenced by interactions and molecular structure of capping agents that stabilize them. Green synthesis of AgNPs using Lenzites betulina, a macrofungus with antioxidant properties, should be possible allowing the active metabolites or biomolecules to be incorporated in AgNP as capping molecules. Using surface plasmon resonance (SPR), the synthesis of AgNP using the aqueous extract of L. betulina was optimized. The purified L.betulina-capped AgNPs were then characterized and its antioxidant activity was compared with the raw L. betulina extract. The L. betulina-capped AgNPs exhibited SPR peak characteristic of AgNPs. Morphological analyses showed non-uniform spherical AgNP with visible intertwining capping agents engulfing the nanomaterial. FT-IR spectra revealed amide, carboxylate, and hydroxyl absorptions, confirming the role of some organic compounds as capping molecules. Extraction and complexation of the capping agent with SDS showed characteristic electronic excitation of phenylalanine along with tryptophan and tyrosine residues, suggesting the proteinaceous or polypeptide nature of the capping agent. The L. betulina-capped AgNPs were relatively stable (zeta potential − 26.7 mV), and the antioxidant activity was significantly enhanced compared to the raw extract. This is the first demonstration of L. betulina mushrooms in synthesizing AgNPs, the investigation of the proteinaceous capping biomolecules, and the enhanced effect of L. betulina-capped AgNPs in promoting stable radical reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43, 1164–1170. https://doi.org/10.1016/j.materresbull.2007.06.020.

    Article  Google Scholar 

  2. Dipankar, C., & Murugan, S. (2012). The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces. B, Biointerfaces, 98, 112–119. https://doi.org/10.1016/j.colsurfb.2012.04.006.

    Article  Google Scholar 

  3. Cataldo, F., Ursini, O., & Angelini, G. (2013). A green synthesis of colloidal silver nanoparticles and their reaction with ozone. Eur Chem Bull, 2, 700–705. https://doi.org/10.17628/ecb.2013.2.700-705.

    Article  Google Scholar 

  4. Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., & Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3, 135–140. https://doi.org/10.1016/j.arabjc.2010.04.008.

    Article  Google Scholar 

  5. Hussain, J., Kumar, S., Hashmi, A. A., & Khan, Z. (2011). Silver nanoparticles: preparation, characterization, and kinetics. Adv Mat Lett, 2, 188–194. https://doi.org/10.5185/amlett.2011.1206#sthash.kTIvbUae.dpuf.

    Article  Google Scholar 

  6. Sudhakar, T., Nanda, A., Babu, S. G., Janani, S., Evans, M. D., & Markose, T. K. (2014). Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J PharmTech Res, 6, 1718–1723.

    Google Scholar 

  7. Philip, D. (2009). Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 73, 374–381. https://doi.org/10.1016/j.saa.2009.02.037.

    Article  Google Scholar 

  8. Hsu, T. H., Shiao, L. H., Hsieh, C., & Chang, D. M. (2002). A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chemistry, 78, 463–469. https://doi.org/10.1016/S0308-8146(02)00158-9.

    Article  Google Scholar 

  9. Ballottin, D., Fulaz, S., Souza, M. L., Corio, P., Rodrigues, A. G., Souza, A. O., Gaspari, P. M., Gomes, A. F., Gozzo, F., & Tasic, L. (2016). Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Research Letters, 11, 313. https://doi.org/10.1186/s11671-016-1538-y.

    Article  Google Scholar 

  10. Chung, Y. C., Chen, I. H., & Chen, C. J. (2008). The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials, 29, 1807–1816. https://doi.org/10.1016/j.biomaterials.2007.12.032.

    Article  Google Scholar 

  11. Lee, I. N., Yun, B. S., Cho, S. M., Kim, W. G., Kim, J. P., Ryoo, I. J., Koshino, H., & Yoo, I. D. (1996). Betulinans a and B, two benzoquinone compounds from Lenzites betulina. Journal of Natural Products, 59, 1090–1092. https://doi.org/10.1021/np960253z.

    Article  Google Scholar 

  12. Liu, K., Wang, J. L., Wu, H. B., Wang, Q., Bi, K. L., & Song, Y. F. (2012). A new pyranone from Lenzites betulina. Chem Nat Comp, 48, 780–781. https://doi.org/10.1007/s10600-012-0380-4.

    Article  Google Scholar 

  13. Liu, K., Wang, J. L., Zhao, L., & Wang, Q. (2014). Anticancer and antimicrobial activities and chemical composition of the birch Mazegill mushroom Lenzites betulina (higher basidiomycetes). Int J Med Mushrooms, 16, 327–337. https://doi.org/10.1615/IntJMedMushrooms.v16.i4.30.

    Article  Google Scholar 

  14. Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18, 356–363. https://doi.org/10.1016/j.jscs.2013.09.011.

    Article  Google Scholar 

  15. Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7, 1131–1139. https://doi.org/10.1016/j.arabjc.2013.04.007.

    Article  Google Scholar 

  16. Fakoya, S., & Oloketuyi, S. F. (2012). Antimicrobial efficacy and phytochemical screening of mushrooms, Lenzites betulinus, and Coriolopsis gallica extracts. TAF Prev Med Bull, 11, 695–698. https://doi.org/10.5455/pmb.1-1327262044.

    Article  Google Scholar 

  17. Merca, F. E., & Quizon, R. V. (2002). Isolation, purification and characterization of a lectin from Lenzites sp. Philipp Agric Sci, 85, 180–191.

    Google Scholar 

  18. Garidel, P., & Schott, H. (2006). Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations. Bioprocess International, 48–55.

  19. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces. B, Biointerfaces, 28, 313–318. https://doi.org/10.1016/S0927-7765(02)00174-1.

    Article  Google Scholar 

  20. Selvi, V. K., & Sivakumar, T. (2012). Isolation and characterization of silver nanoparticles from Fusarium oxysporum. International Journal of Current Microbiology and Applied Sciences, 1, 56–62.

    Google Scholar 

  21. Quester, K., Avalos-Borja, M., & Castro-Longoria, E. (2016). Controllable biosynthesis of small silver nanoparticles using fungal extract. J Biomater Nanobiotechnol, 7, 118–125. https://doi.org/10.4236/jbnb.2016.72013.

    Article  Google Scholar 

  22. Jain, N., Bhargava, A., Rathi, M., Dilip, R. V., & Panwar, J. (2015). Removal of protein capping enhances the antibacterial efficiency of biosynthesized silver nanoparticles. PLoS One, 10. https://doi.org/10.1371/journal.pone.0134337.

    Article  Google Scholar 

  23. Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I. H., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanbiotechnology, 3(8). https://doi.org/10.1186/1477-3155-3-8.

    Article  Google Scholar 

  24. Phanjom, P., & Ahmed, G. (2015). Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC no. 1846) and its characterizations. Nanoscience and Nanotechnology, 5, 14–21.

    Google Scholar 

  25. Shihab, R. N., Al-Kalifawi, E. J., & Al-Haidari, S. H. J. (2016). Environmental friendly synthesis of silver nanoparticles using leaf extract of Mureira tree (Azadirachta indica) cultivated in Iraq and efficacy the antimicrobial activity. Journal of Natural Science Research, 6, 47–56.

    Google Scholar 

  26. Umadevi, M., Shalini, S., & Bindhu, M. R. (2012). Synthesis of silver nanoparticles using D. carota extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(025008). https://doi.org/10.1088/2043-6262/3/2/025008.

    Google Scholar 

  27. Dhoondia, Z. H., & Chakraborty, H. (2012). Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater Nanotechno, 2, 1–7. https://doi.org/10.5772/55741.

    Article  Google Scholar 

  28. Xiao, F., Liu, H. G., & Lee, Y. I. (2008). Formation and characterization of two-dimensional arrays of silver oxide nanoparticles under Langmuir monolayers of n-hexadecyl dihydrogen phosphate. Bulletin of the Korean Chemical Society, 29, 2368–2372. https://doi.org/10.5012/bkcs.2008.29.12.2368.

    Article  Google Scholar 

  29. Kumar, R., Roopan, S. M., Prabhakarn, A., Khanna, V. G., & Chakroborty, S. (2012). Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 90, 173–176. https://doi.org/10.1016/j.saa.2012.01.029.

    Article  Google Scholar 

  30. Mavani, K., & Shah, M. (2013). Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. Int J Eng Res Tech, 2(2), 1–5. https://doi.org/10.13140/2.1.3116.8648.

    Article  Google Scholar 

  31. Sodha, K. H., Jadav, J. K., Gajera, H. P., & Rathod, K. J. (2015). Characterization of silver nanoparticles synthesized by different chemical reduction methods. International Journal of Pharma and Bio Sciences, 6, 199–208.

    Google Scholar 

  32. Yoosaf, K., Ipe, B. I., Suresh, C. H., & Thomas, K. G. (2007). In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. Journal of Physical Chemistry C, 111, 12839–12847. https://doi.org/10.1021/jp073923q.

    Article  Google Scholar 

  33. Mathew, J., Rathod, V., Singh, D., Singh, A. K., & Kulkarni, P. (2016). Antioxidant potential of AgNPs from the fungus Aspergillus pseudodeflectus by DPPH radical scavenging assay. Int J Pharm Pharm Sci Res, 6, 6–11.

    Google Scholar 

  34. Zieliǹski, H., & Kozɫowska, H. (2000). Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry, 48, 2008–2016. https://doi.org/10.1021/jf990619o.

    Article  Google Scholar 

  35. Ramakrishna, H., Murthy, S. S., Divya, R., MamathaRani, D. R., & Pandarunga, M. G. (2012). Hydroxy radical and DPPH scavenging activity of crude protein extract of Leucas linifolia: a folk medicinal plant. Asian J Plant Sci Res, 2, 30–35.

    Google Scholar 

  36. Ranjitham, A. M., Suja, R., Caroling, G., & Tiwari, S. (2013). In vitro evaluation of antioxidant, antimicrobial, anticancer activities and characterization of Brassica oleracea. var. Bortrytis. L synthesized silver nanoparticles. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 239–251.

    Google Scholar 

  37. Hussin, F. R. M., Vitor, I. I. R. J. S., Joaquin, J. A. O., Clerigo, M. M., & Paano, A. M. C. (2016). Anti-hyperglycemic effects of aqueous Lenzites betulina extracts from the Philippines on the blood glucose levels of the ICR mice (Mus musculus). Asian Pac J Trop Biomed, 6, 155–158. https://doi.org/10.1016/j.apjtb.2015.04.013.

    Article  Google Scholar 

Download references

Funding

This work was supported by DLSU-URCO and National Research Council of the Philippines (NRCP)-DOST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drexel H. Camacho.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• Active metabolite separation through the process of silver nanoparticle (AgNP) synthesis

• Synergistic effect of the proteinaceous capping biomolecules from L. betulina mushroom and AgNPs

• Antioxidant activity of L. betulina-capped AgNPs enhances stable radical reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sytu, M.R.C., Camacho, D.H. Green Synthesis of Silver Nanoparticles (AgNPs) from Lenzites betulina and the Potential Synergistic Effect of AgNP and Capping Biomolecules in Enhancing Antioxidant Activity. BioNanoSci. 8, 835–844 (2018). https://doi.org/10.1007/s12668-018-0548-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0548-x

Keywords

Navigation