Skip to main content
Log in

Amoxicillin Loaded Hollow Microparticles in the Treatment of Osteomyelitis Disease Using Single-Nozzle Electrospinning

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this study, hollow microparticles were produced with polymethylsilsesquioxane/chitosan/bovine hydroxyapatite/hexagonal boron nitride (PCBB) polyblend using single-nozzle electrospinning method. Also, hollow microparticles are loaded with amoxicillin (AMX) and their drug delivery capabilities have been studied according to a treatment of osteomyelitis disease. The morphology, chemical groups, particle size, antimicrobial activity, and AMX drug release were systematically studied using scanning electron microscopy (SEM), optical microscopy, Fourier transformation infrared spectroscopy (FTIR), hollow microparticle size measurements, antimicrobial activity test, and UV spectroscopy. In vitro biocompatibility was analyzed with human bone osteosarcoma (U2OS) cell line. This present work can help in the design of a drug delivery platform for antimicrobial effect and bone repair at the same time for osteomyelitis disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu-Zhu, L., Li-Xiong, W., Lei, S., & Jian-Feng, C. (2004). Fabrication of porous hollow silica nanoparticles and their applications in drug release control. Journal of Controlled Release, 98, 245–254.

    Google Scholar 

  2. Lou, X. W., Archer, L. A., & Yang, Z. (2008). Hollow micro-/nanostructures: Synthesis and applications. Advanced Materials, 20, 3987–4019.

    Google Scholar 

  3. Enayati, M., Ahmad, Z., Stride, E., & Edirisinghe, M. (2010). One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. Journal of the Royal Society, Interface, 7, 667–675.

    Google Scholar 

  4. Bohr, A., Kristensen, J., Stride, E., Dyas, M., & Edirisinghe, M. (2011). Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. International Journal of Pharmaceutics, 412, 59–67.

    Google Scholar 

  5. Fujiwara, M., Shiokawa, K., Tanaka, Y., & Nakahara, Y. (2004). Preparation and formation mechanism of silica microcapsules (hollow sphere) by water/oil/water interfacial reaction. Chemistry of Materials, 16, 5420–5426.

    Google Scholar 

  6. Im, S. H., Jeong, U., & Xia, Y. (2005). Polymer hollow particles with controllable holes in their surfaces. Nature Materials, 4, 671–675.

    Google Scholar 

  7. Roy, P., Bertrand, G., & Coddet, C. (2005). Spray drying and sintering of zirconia based hollow powders. Powder Technology, 157, 20–26.

    Google Scholar 

  8. Nagamine, S., Sugioka, A., & Konishi, Y. (2007). Preparation of TiO2 hollow microparticles by spraying water droplets into an organic solution of titanium tetraisopropoxide. Materials Letters, 61, 444–447.

    Google Scholar 

  9. Zhang, L., D’Acunzi, M., Kappl, M., Auernhammer, G. K., Vollmer, D., van Kats, C. M., & van Blaaderen, A. (2009). Hollow silica spheres: Synthesis and mechanical properties. Langmuir, 25, 2711–2717.

    Google Scholar 

  10. Lin, Y. S., Wu, S. H., Tseng, C. T., Hung, Y., Chang, C., & Mou, C. Y. (2009). Synthesis of hollow silica nanospheres with a microemulsion as the template. Chemical Communications, 24, 3542–3544.

    Google Scholar 

  11. Mathiowitz, E., Jacob, J. S., Jong, Y. S., Carino, G. P., Chickering, D. E., Chaturvedi, P., Santos, C. A., Vijayaraghavan, K., Montgomery, S., Bassett, M., & Morrell, C. (1997). Biologically erodable microspheres as potential oral drug delivery systems. Nature, 386, 410–414.

    Google Scholar 

  12. Marinakos, S. M., Novak, J. P., Brousseau III, L. C., House, A. B., Edeki, E. M., Feldhaus, J. C., & Feldheim, D. L. (1999). Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. Journal of the American Chemical Society, 121, 8518–8522.

    Google Scholar 

  13. Kim, S. W., Kim, M., Lee, W. Y., & Hyeon, T. (2002). Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. Journal of the American Chemical Society, 124, 7642–7643.

    Google Scholar 

  14. Yow, H. N., Wu, X., Routh, A. F., & Guy, R. H. (2009). Dye diffusion from microcapsules with different shell thickness into mammalian skin. European Journal of Pharmaceutics and Biopharmaceutics, 72, 62–68.

    Google Scholar 

  15. Yu, M., Dong, R.-H., Yan, X., Yu, G.-F., You, M.-H., Ning, X., & Long, Y.-Z. (2017). Recent advances in needleless electrospinning of ultrathin fibers: From academia to industrial production. Macromolecular Materials and Engineering, 302, 1–19.

    Google Scholar 

  16. Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., du Toit, L. C., & Ndesendo, V. M. K. (2013). A review of the effect of processing variables on the fabrication of electrospun Nanofibers for drug delivery applications. Journal of Nanomaterials, 2013, 1–22.

    Google Scholar 

  17. Vilara, G., Tulla-Puche, J., & Albericio, F. (2012). Polymers and drug delivery systems. Current Drug Delivery, 9, 1–28.

    Google Scholar 

  18. Zawaneh, P. N., Doody, A. M., Zelikin, A. N., & Putnam, D. (2006). Diblock copolymers based on dihydroxyacetone and ethylene glycol: Synthesis, characterization, and nanoparticle formulation. Biomacromolecules, 7, 3245–3325.

    Google Scholar 

  19. Xiang, H., Zhang, L., Wang, Z., Yu, X., Long, Y., Zhang, X., & Xu, J. (2011). Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol–gel transition: Superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property. Journal of Colloid and Interface Science, 359, 296–303.

    Google Scholar 

  20. Cross, S. E., Innes, B., Roberts, M. S., Tsuzuki, T., Robertson, T. A., & McCormick, P. (2007). Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacology and Physiology, 20, 148–154.

    Google Scholar 

  21. Cheng, C. J., Chu, L. Y., & Xie, R. (2006). Preparation of highly monodisperse W/O emulsions with hydrophobically modified SPG membranes. Journal of Colloid and Interface Science, 300, 375–382.

    Google Scholar 

  22. Chen, J.-F., Ding, H.-M., Wang, J.-X., & Shao, L. (2004). Preparation and characterization of porous hollow silica nanoparticles for drug deliveryapplication. Biomaterials, 25, 723–727.

    Google Scholar 

  23. Geng, H., Zhao, Y., Liu, J., Cui, Y., Wang, Y., Zhao, Q., & Wang, S. (2016). Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release. International Journal of Pharmaceutics, 510, 184–194.

    Google Scholar 

  24. Zhao, Q., Geng, H., Wang, Y., Gao, Y., Huang, J., Wang, Y., Zhang, J., & Wang, S. (2014). Hyaluronic acid oligosaccharide modified redoxresponsive mesoporous silica nanoparticles for targeted drug delivery. ACS Applied Materials & Interfaces, 6, 20290–20299.

    Google Scholar 

  25. Echeverria, C., Soares, P., Robalo, A., Pereira, L., Novo, C. M. M., Ferreira, I., & Borges, J. P. (2015). One-pot synthesis of dual-stimuli responsive hybridPNIPAAm-chitosan microgels. Materials and Design, 86, 745–751.

    Google Scholar 

  26. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603–632.

    Google Scholar 

  27. Depan, D., & Misra, R. D. K. (2012). Hybrid nanostructured drug carrier with tunable and controlled drug release. Materials Science and Engineering: C, 32, 1704–1709.

    Google Scholar 

  28. Misra, R. D. K. (2012). Core–shell magnetic nanoparticle carrier for targeted drug delivery: Challenges and design. Materials and Technologies, 25, 118–126.

    Google Scholar 

  29. Torrado, S., Prada, P., Torre, P. M., & Torrado, S. (2004). Chitosan-poly(acrylic) acid polyionic complex: In vivo study to demonstrate prolonged gastric retention. Biomaterials, 25, 917–923.

    Google Scholar 

  30. Venugopal, J., Prabhakaran, M. P., Zhang, Y., Low, S., Choon, A. T., & Ramakrishna, S. (2010). Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philosophical Transactions of the Royal Society A, 368, 2065–2208.

    Google Scholar 

  31. Hwang, H. J., Barakat, N. A. M., Kanjwal, M. A., Sheikh, F. A., & Kim, Y. H. (1992). Boron nitride nanofibers by the electrospinning technique. Macromolecular Research, 18, 551–557.

    Google Scholar 

  32. Kawanabe, K., Okada, Y., Matsusue, Y., Iida, H., & Nakamura, T. (1998). Treatment of osteomyelitis with antibiotic soaked porous glass ceramic. Journal of Bone and Joint Surgery, 80-B, 30–527.

    Google Scholar 

  33. Chang, Y. L., Stanford, C. M., & Keller, J. C. (2000). Calcium and phosphate supplementation promotes bone cell mineralization: Implications for hydroxyapatite (HA)-enhanced bone formation. Journal of Biomedical Materials Research, 52, 8–270.

    Google Scholar 

  34. Goto, T., Kojima, T., Iijima, T., Yokokura, S., Kawano, H., Yamamoto, A., & Matsuda, K. (2001). Resorption of synthetic porous hydroxyapatite and replacement by newly formed bone. Journal of Orthopaedic Science, 6, 7–444.

    Google Scholar 

  35. Catanese, J., Featherstone, J. D. B., & Keavery, T. M. (1999). Characterization of the mechanical and ultrastructural properties of heat treated cortical bone for use as a bone substitute. Journal of Biomedical Materials Research, 45, 36–327.

    Google Scholar 

  36. Hwang, H. J., Barakat, N. A. M., Kanjwal, M. A., Sheikh, F. A., & Kim, Y. H. (2010). Boron nitride nanofibers by the electrospinning technique. Macromolecular Research, 18, 551–557.

    Google Scholar 

  37. Kumar, V., Abbas, A., & Fausto, N. (2007). Robbins basic pathology (8th ed.). Philadelphia: Elsevier Health.

    Google Scholar 

  38. Romanò, C. L., Romanò, D., Logoluso, N., & Drago, L. (2011). Bone and joint infections in adults: A comprehensive classification proposal. European Orthopaedics and Traumatology, 1, 207–217.

    Google Scholar 

  39. Lew, D. P., & Waldvogel, F. A. (2004). Osteomyelitis. Lancet, 364, 79–369.

    Google Scholar 

  40. Mader, J. T., Mohan, D., & Calhoun, J. (1997). A practical guide to the diagnosis and management of bone and joint infections. Drugs, 54, 253–264.

    Google Scholar 

  41. Cassat, J. E., Hammer, N. D., Campbell, J. P., Benson, M. A., Perrien, D. S., Mrak, L. N., Smeltzer, M. S., Torres, V. J., & Skaar, E. P. (2013). Cell Host & Microbe, 13, 759–772.

    Google Scholar 

  42. Horst, S. A., Hoerr, V., Beineke, A., Kreis, C., Tuchscherr, L., Kalinka, J., Lehne, S., Schleicher, I., Köhler, G., Fuchs, T., Raschke, M. J., Rohde, M., Peters, G., Faber, C., Löffler, B., & Medina, E. (2012). A novel mouse model of Staphylococcus aureus chronic osteomyelitis that closely mimics the human infection. The American Journal of Pathology, 181, 1206–1214.

    Google Scholar 

  43. Gerber, J. S., Coffin, S. E., Smathers, S. A., & Zaoutis, T. E. (2009). Trends in the incidence of methicillin-resistant Staphylococcus aureus infection in children's hospitals in the United States. Clinical Infectious Diseases, 49, 65–71.

    Google Scholar 

  44. Weichert, S., Sharland, M., Clarke, N. M., & Faust, S. N. (2008). Acute haematogenous osteomyelitis in children: Is there any evidence for how long we should treat? Current Opinion in Infectious Diseases, 21, 258–262.

    Google Scholar 

  45. Rao, N., Ziran, B. H., & Lipsky, B. A. (2011). Treating osteomyelitis: Antibiotics and surgery. Plastic and Reconstructive Surgery, 127, 177S–187S.

    Google Scholar 

  46. Brady, R. A., Leid, J. G., Costerton, J. W., & Shirtliff, M. E. (2006). Osteomyelitis: Clinical overview and mechanisms of infection persistence. Clinical Microbiology Newsletter, 28, 65–72.

    Google Scholar 

  47. Gunduz, O., Ahmad, Z., Stride, E., & Edirisinghe, M. (2013). Continuous generation of ethyl cellulose drug delivery Nanocarriers from microbubbles. Pharmaceutical Research, 30, 225–237.

    Google Scholar 

  48. Cohen, R., & Grimprel, E. (2007). Pharmacokinetics and pharmacodynamics of antimicrobial therapy used in child osteoarticular infections. Archives de Pédiatrie, 14, 122–127.

    Google Scholar 

  49. Landersdorfer, C. B., Kinzig, M., Bulitta, J. B., Hennig, F. F., Holzgrabe, U., Sorgel, F., & Gusinde, J. (2009). Bone penetration of amoxicillin and Clavulanic acid evaluated by population pharmacokinetics and Monte Carlo simulation. Antimicrobial Agents and Chemotherapy, 53, 2569–2578.

    Google Scholar 

  50. Lipsky, B., Itani, K., & Norden, C. (2004). Treating foot infections indiabetic patients: A randomized, multicenter, open-label trialof linezolid versus ampicillin-sulbactam/amoxycillin-clavulanate. Clinical Infectious Diseases, 38, 17–24.

    Google Scholar 

  51. Gisby, J., Beale, A. S., Bryant, J. E., & Toseland, C. D. (1994). Staphylococcal osteomyelitis—A comparison of co-amoxiclav with clindamycin and flucloxacillin in an experimental rat model. The Journal of Antimicrobial Chemotherapy, 34, 755–764.

    Google Scholar 

  52. Li, Z., & Wang, C. (2013). One-dimensional nanostructures. Effects of working parameters on electrospinning (pp. 15–28). London: SpringerBriefs in Materials.

    Google Scholar 

  53. Luan, X., Skupin, M., Siepmann, J., & Bodmeier, R. (2006). Key parameters affecting the initial release (burst) and encapsulation efficiency of peptide-containing poly (lactide-co-glycolide) microparticles. International Journal of Pharmaceutics, 324, 168–175.

    Google Scholar 

  54. Soares, R. M. D., Patzer, V. L., Dersch, R., Wendorff, J., Silveira, N. P., & Pranke, P. (2011). A novel globular protein electrospun fiber mat with the addition of polysilsesquioxane. International Journal of Biological Macromolecules, 49, 480–486.

    Google Scholar 

  55. Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40, 4585–4592.

    Google Scholar 

  56. Chang, M. W., Stride, E., & Edirisinghe, M. (2010). Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization. Journal of the Royal Society, Interface, 7, S451–S460.

    Google Scholar 

  57. Husain, O., Lau, W., Edirisinghe, M., & Parhizkar, M. (2016). Investigating the particle to transition threshold during electrohydrodynamic atomization of a polymer solution. Materials Science and Engineering: C, 65, 240–250.

    Google Scholar 

  58. Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58, 493–497.

    Google Scholar 

  59. Liang, T., Li, Y. L., Su, D., & Du, H. B. (2010). Silicon oxycarbide ceramics with reduced carbon by pyrolysis of polysiloxanes in water vapour. Journal of the European Ceramic Society, 30, 2677–2682.

    Google Scholar 

  60. Bebu, A., Szabó, L., Leopold, N., Berindean, C., & David, L. (2011). IR, Raman, SERS and DFT study of amoxicillin. Journal of Molecular Structure, 993, 52–56.

    Google Scholar 

  61. Silverstein, R. M., Bassler, G. C., & Morril, T. C. (1991). Spectrometric identification of organic compound. New York: Wiley.

    Google Scholar 

  62. Wang, J., & Xin, Z. (2012). Synthesis and characterization of polymethylsilsesquioxane microspheres by the two-step sol-gel method. E-Polymers, 46, 1–10.

    Google Scholar 

  63. Kostoglou, N., Polychronopoulou, K., & Rebholz, C. (2015). Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum, 112, 42–45.

    Google Scholar 

  64. Kim, J. Y., Lee, T. J., Cho, D. W., & Kim, B. S. (2010). Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 21, 951–962.

    Google Scholar 

  65. Farazuddin, M., Chauhan, A., Khan, R. M. M., & Owais, M. (2011). Amoxicillin-bearing microparticles: Potential in the treatment of listeria monocytogenes infection in Swiss albino mice. Bioscience Reports, 31, 265–272.

    Google Scholar 

  66. Lahiri, D., Rouzaud, F., Richard, T., Keshri, A. K., Bakshi, S. R., Kos, L., & Agarwal, A. (2010). Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomaterialia, 6, 3524–3533.

    Google Scholar 

  67. Lahiri, D., Singh, V., Benaduce, A. P., Seal, S., Kos, L., & Agarwal, A. (2011). Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. Journal of the Mechanical Behavior of Biomedical Materials, 4, 44–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Gunduz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altun, E., Aydogdu, M.O., Koc, F. et al. Amoxicillin Loaded Hollow Microparticles in the Treatment of Osteomyelitis Disease Using Single-Nozzle Electrospinning. BioNanoSci. 8, 790–801 (2018). https://doi.org/10.1007/s12668-018-0539-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0539-y

Keywords

Navigation