Skip to main content
Log in

Bioaccumulation of Transition Metal Oxide Nanoparticles and Their Influence on Early Growth Stages of Vigna unguiculata Seeds

  • Published:
BioNanoScience Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A reasonable understanding of the impact and health risk of the metal oxide nanoparticles treated on edible plants is necessary in order to use nanomaterials in food and medicine. In this study, we investigate the uptake and toxic response of transition metal oxides, namely Fe2O3, CuO and ZnO nanoparticles synthesised by co-precipitation method using nitrate salts of the respective metals as precursors. The characterisation of all the prepared nanoparticles shows the purity above 97% with rod-like morphology. Cowpea (Vigna unguiculata) seeds are soaked in a monodispersed solution of nanoparticles and kept for seed germination and plant growth. Transport and accumulation of the nanoparticles treated in the seeds are assessed through X-ray fluorescence spectroscopy which confirms the uptake of the nanoparticles with respect to the treatment regime. The seeds soaked in CuO nanoparticles reveal better seed germination percentage, an increased coleoptile length and a plant height at 100 ppm concentration than other nanoparticles. This study proves the limitation of CuO nanoparticle application for better growth of cowpea plants whereas iron and zinc oxide nanoparticles show promising response in plant growth, uptake and bioavailability in seeds even at higher treatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang, J., Oberdorster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11, 77–89.

    Article  Google Scholar 

  2. Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010a). Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of the Total Environment, 408, 3053–3061.

    Article  Google Scholar 

  3. Asli, S., & Neumann, P. M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 32, 577–584.

    Article  Google Scholar 

  4. Huang, Z., Zheng, X., Yan, D., Yin, G., Liao, X., Kang, Y., Yao, Y., Huang, D., & Hao, B. (2008). Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 24, 4140–4144.

    Article  Google Scholar 

  5. Bombin, S., LeFebvre, M., Sherwood, J., Xu, Y., Bao, Y., & Ramonell, K. M. (2015). Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. International Journal of Molecular Sciences, 16(10), 24174–24193.

    Article  Google Scholar 

  6. Kahru, A., & Dubourguier, H. C. (2010). From ecotoxicology to nanoecotoxicology. Toxicology, 269, 105–119.

    Article  Google Scholar 

  7. Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2013). Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnology, 7(3), 70–77.

    Article  Google Scholar 

  8. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., Prabu, P., & Kannan, N. (2012). Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research, 14, 1–14.

    Article  Google Scholar 

  9. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2014). Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Advances, 4, 8461–8465.

    Article  Google Scholar 

  10. Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochemistry, 47, 651–658.

    Article  Google Scholar 

  11. Ma, Y., Kuang, L., He, X., Bai, W., Ding, Y., Zhang, Z., Zhao, Y., & Chai, Z. (2010b). Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 78, 273–279.

    Article  Google Scholar 

  12. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Alexandru, S. B. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221–3227.

    Article  Google Scholar 

  13. Dimkpa, C. O., McLean, J. E., Latta, D. E., Manango, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. J. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14, 1125.

    Article  Google Scholar 

  14. Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., Dizdaroglu, M., Xing, B., & Nelson, B. C. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science & Technology, 46, 1819–1827.

    Article  Google Scholar 

  15. Barrena, R., Casals, E., Colon, J., Font, X., Sanchez, A., & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75, 850–857.

    Article  Google Scholar 

  16. Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13, 822–828.

    Article  Google Scholar 

  17. Lin, D. H., & Xing, B. S. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42, 5580–5585.

    Article  Google Scholar 

  18. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43, 9473–9479.

    Article  Google Scholar 

  19. Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, T. S., Sajanlal, P. R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35, 905–927.

    Article  Google Scholar 

  20. Yang, J., Cao, W., & Rui, Y. (2017). Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. Journal of Plant Interactions, 12(1), 158–169.

    Article  Google Scholar 

  21. Boonyanitipong, P., Kumar, P., Kositsup, B., Baruah, S., & Dutta, J. (2011). Effects of zinc oxide nanoparticles on roots of rice Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics, 4, 283–285.

    Google Scholar 

  22. Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250.

    Article  Google Scholar 

  23. Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485–3498.

    Article  Google Scholar 

  24. Shi, J., Abid, A. D., Kennedy, I. M., Hristova, K. R., & Silk, W. K. (2011). To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environmental Pollution, 159, 1277–1282.

    Article  Google Scholar 

  25. Yuan, J., He, A., Huang, S., Hua, J., & Sheng, G. D. (2016). Internalization and phytotoxic effects of CuO nanoparticles in Arabidopsis thaliana as revealed by fatty acid profiles. Environmental Science & Technology, 250(19), 10437–11044.

    Article  Google Scholar 

  26. Siddiqi, K. S., & Husen, A. (2016). Engineered gold nanoparticles and plant adaptation potential. Nanoscale Research Letters, 11, 400.

    Article  Google Scholar 

  27. Wang, P., Menzies, N. W., Lombi, E., McKenna, B. A., Johannessen, B., Glover, C. J., Kappen, P., & Kopittke, P. M. (2013). Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environmental Science & Technology, 47(23), 13822–13830.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (R.S) is thankful to the University Grants Commission (UGC), New Delhi, for the award of Post-Doctoral Fellowship for Women (F.15-1/2015-17/PDFWM-2015-17-TAM-36274 dt.12/10/2015) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suriyaprabha, R., Sreeja, K.A., Prabu, M. et al. Bioaccumulation of Transition Metal Oxide Nanoparticles and Their Influence on Early Growth Stages of Vigna unguiculata Seeds. BioNanoSci. 8, 752–760 (2018). https://doi.org/10.1007/s12668-018-0535-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0535-2

Keywords

Navigation