Skip to main content
Log in

Photodecorated Surface with Nanoparticles: Versatile Substrates for Technology Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This contribution reports a simple and straightforward photochemical method for decorating hydrophobic surfaces with metal and metal oxide nanoparticles. The presented process includes the steps of providing a metal precursor having hydrophobic parts adapted to interact with assistance of a photosensitizer and forming a reactive adduct precursor metal/surface; the process allows the metal nanoparticles to grow directly onto the surface. The formed nanoparticles have been investigated by means of transmission electron microscopy (TEM) and optical techniques. The nanoparticles are sufficiently isolated, not aggregated and not interconnected; additionally, it is remarkable that the so-formed nanoparticles do not create a film, thus providing the treated surface with the chemical properties of both the substrate (surface portion not covered by the metal nanoparticles) and the metal. Substrates with multiple chemical functionalities are thereby obtained; they can selectively bind molecules with different chemistry, onto the uncovered substrate surface and onto metal nanoparticle surface. The proposed process also allows double decoration with two or more metallic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., & Tarascon, J.-M. (2000). Nature, 407, 496–499.

    Article  Google Scholar 

  2. Petralia, S., Barbuzzi, T., & Ventimiglia, G. (2012). Materials Science and Engineering C, 32, 848–850.

    Article  Google Scholar 

  3. Roose, B., Pathak, S., & Steiner, U. (2015). Chem. Soc. Rev., 44, 8326–8349.

    Article  Google Scholar 

  4. Marino, N., Petralia, S., Perez-Lloret, M., Mosinger, J., Conoci, S., & Sortino, S. (2016). Journal of Materials Chemistry B, 4, 5825–5830.

    Article  Google Scholar 

  5. Petralia, S., Ventimiglia, G., Ceschia, S., Gasparin, M., & Verardo, R. (2017). BionanoScience. https://doi.org/10.1007/s12668-017-0398-y.

  6. Guarnaccia, M., Gentile, G., Alessi, E., Schneider, C., Petralia, S., & Cavallaro, S. (2014). Genomics, 103, 177–182.

    Article  Google Scholar 

  7. Luo, L., D., Z., Li, H., Kim, J., Henkelman, G., & Crook, R. M. (2017). JACS. https://doi.org/10.1021/jacs.7b01653.

  8. Patil, S. S., Shedbalkar, U. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Environmental Technology & Innovation, 5, 10–21.

    Article  Google Scholar 

  9. Ashayer-Soltani, R., Hunt, C., & Thomas, O. (2016). Fabrication of highly conductive stretchable textile with silver nanoparticles. Textile Research Journal, 86, 1041–1049.

    Article  Google Scholar 

  10. Hiroki, F. H., Rhiannon, P., & Ting, G. (2004). Langmuir, 205, 553.

    Google Scholar 

  11. Tang, J., Guo, H., Zhao, M., Liu, W., Chou, X., Zhang, B., Xue, C., Zhang, W., & Liu, J. (2017). Sensors and Actuators B: Chemical., 242, 1171–1176.

    Article  Google Scholar 

  12. Petralia, S., Sciuto, E. L., & Conoci, S. (2016). Analyts, 142, 140–146.

    Google Scholar 

  13. Yusop, R., Broceta, A. U., Johansson, E. M. V., Sanchez-Martin, R. M., & Bradley, M. (2011). Nature Chemistry, 3, 239–243.

    Article  Google Scholar 

  14. Xianqiao, L., Yueping, G., Yueping, Y. Y., Zhiya, M., Xiaobing, W., & HuiZhou, L. (2004). Journal of Applied Polymer Science, 94, 2205–2211.

    Article  Google Scholar 

  15. Filipowska B. et al. (2011). New method for the antibacterial and antifungal modification of silver finished textiles & fibers textiles in eastern Europe 19, 124–128.

  16. Kochuveedu, S. T., Kim, D. P., & Kim, D. H. (2012). Physical Chemistry C, 116, 2500–2506.

    Article  Google Scholar 

  17. Ganzoury, M. A., & Allam, N. K. (2015). Renewable and Sustainable Energy Reviews, 50, 1392–1404.

    Article  Google Scholar 

  18. McClure D. J., & Perez M. A. (3M Innovative Properties Company) USA. Pat. No. 7, 666,494.

  19. Facibeni A., Bottani C. E., Dellasega D., Di Fonzo F., & Bogana M. P. (Polit.di Milano) USA Pat. No. 2011/0110999 A1.

  20. Yong, K. T., Sahoo, Y., Swihart, M. T., & Prasad, P. (2006). Colloids and Surface; A, 290, 89–105.

    Article  Google Scholar 

  21. Chretien M. N., Wu Y., & Chopra N. (Xeron Corporation) USA Pat. No. 7,749,300 B2.

  22. Scirè, S., Crisafulli, C., Giuffrida, S., Mazza, C., Riccobene, P. M., Pistone, A., Ventimiglia, G., Bongiorno, C., & Spinella, C. (2009). Applied Catalysis A, 367, 138–145.

    Article  Google Scholar 

  23. Luo, N., Mao, L., Jiang, L., Wu, Z., & Wu, D. (2009). Material Letters, 63, 154–156.

    Article  Google Scholar 

  24. Petralia S., & Ventimiglia G. USA Pat. N. US20150072164 A1.

  25. Ventimiglia, G., & Motta, A. (2012). Sensors & Transducer Journal, 146, 59–68.

    Google Scholar 

  26. Lashdaf, M., et al. (2003). Applied Catalysis A: General, 241, 5.

    Google Scholar 

  27. Boitiaux, J. P., Cosyns, J., & Vasudevan, S. (1983). Studies in Surface Science and Catalysis, 16, 123.

    Article  Google Scholar 

  28. Lesage-Rosenberg, E., Valic, G., Dexpert, H., & Lagarde, P. (1986). Applied Catalysis, 22, 211–219.

    Article  Google Scholar 

  29. Lee, K. J., An, J.-H., Shin, J. S., Kim, D. H., Kim, C., Ozaki, H., & Koh, J. G. (2007). Nanotechnology, 18, 465201–465708.

    Article  Google Scholar 

Download references

Acknowledgements

We are very gratefully to Prof. Rosario Sanchez for the flow cytometry experiments, Prof. Juan J. Diaz Mochon for the hybridization experiments on membrane substrate, and Dr. Alessandro Motta for the SEM and TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Petralia.

Electronic supplementary material

ESM 1

Details on hybridization experiments are reported in Supporting information SI2 and SI3. (DOCX 577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petralia, S., Ventimiglia, G. Photodecorated Surface with Nanoparticles: Versatile Substrates for Technology Applications. BioNanoSci. 8, 609–616 (2018). https://doi.org/10.1007/s12668-018-0517-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0517-4

Keywords

Navigation