, Volume 8, Issue 2, pp 609–616 | Cite as

Photodecorated Surface with Nanoparticles: Versatile Substrates for Technology Applications

  • Salvatore Petralia
  • Giorgio Ventimiglia


This contribution reports a simple and straightforward photochemical method for decorating hydrophobic surfaces with metal and metal oxide nanoparticles. The presented process includes the steps of providing a metal precursor having hydrophobic parts adapted to interact with assistance of a photosensitizer and forming a reactive adduct precursor metal/surface; the process allows the metal nanoparticles to grow directly onto the surface. The formed nanoparticles have been investigated by means of transmission electron microscopy (TEM) and optical techniques. The nanoparticles are sufficiently isolated, not aggregated and not interconnected; additionally, it is remarkable that the so-formed nanoparticles do not create a film, thus providing the treated surface with the chemical properties of both the substrate (surface portion not covered by the metal nanoparticles) and the metal. Substrates with multiple chemical functionalities are thereby obtained; they can selectively bind molecules with different chemistry, onto the uncovered substrate surface and onto metal nanoparticle surface. The proposed process also allows double decoration with two or more metallic species.


Metal nanoparticles Biomaterials Biosensors 



We are very gratefully to Prof. Rosario Sanchez for the flow cytometry experiments, Prof. Juan J. Diaz Mochon for the hybridization experiments on membrane substrate, and Dr. Alessandro Motta for the SEM and TEM images.

Supplementary material

12668_2018_517_MOESM1_ESM.docx (577 kb)
ESM 1 Details on hybridization experiments are reported in Supporting information SI2 and SI3. (DOCX 577 kb)


  1. 1.
    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., & Tarascon, J.-M. (2000). Nature, 407, 496–499.CrossRefGoogle Scholar
  2. 2.
    Petralia, S., Barbuzzi, T., & Ventimiglia, G. (2012). Materials Science and Engineering C, 32, 848–850.CrossRefGoogle Scholar
  3. 3.
    Roose, B., Pathak, S., & Steiner, U. (2015). Chem. Soc. Rev., 44, 8326–8349.CrossRefGoogle Scholar
  4. 4.
    Marino, N., Petralia, S., Perez-Lloret, M., Mosinger, J., Conoci, S., & Sortino, S. (2016). Journal of Materials Chemistry B, 4, 5825–5830.CrossRefGoogle Scholar
  5. 5.
    Petralia, S., Ventimiglia, G., Ceschia, S., Gasparin, M., & Verardo, R. (2017). BionanoScience.
  6. 6.
    Guarnaccia, M., Gentile, G., Alessi, E., Schneider, C., Petralia, S., & Cavallaro, S. (2014). Genomics, 103, 177–182.CrossRefGoogle Scholar
  7. 7.
    Luo, L., D., Z., Li, H., Kim, J., Henkelman, G., & Crook, R. M. (2017). JACS.
  8. 8.
    Patil, S. S., Shedbalkar, U. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Environmental Technology & Innovation, 5, 10–21.CrossRefGoogle Scholar
  9. 9.
    Ashayer-Soltani, R., Hunt, C., & Thomas, O. (2016). Fabrication of highly conductive stretchable textile with silver nanoparticles. Textile Research Journal, 86, 1041–1049.CrossRefGoogle Scholar
  10. 10.
    Hiroki, F. H., Rhiannon, P., & Ting, G. (2004). Langmuir, 205, 553.Google Scholar
  11. 11.
    Tang, J., Guo, H., Zhao, M., Liu, W., Chou, X., Zhang, B., Xue, C., Zhang, W., & Liu, J. (2017). Sensors and Actuators B: Chemical., 242, 1171–1176.CrossRefGoogle Scholar
  12. 12.
    Petralia, S., Sciuto, E. L., & Conoci, S. (2016). Analyts, 142, 140–146.Google Scholar
  13. 13.
    Yusop, R., Broceta, A. U., Johansson, E. M. V., Sanchez-Martin, R. M., & Bradley, M. (2011). Nature Chemistry, 3, 239–243.CrossRefGoogle Scholar
  14. 14.
    Xianqiao, L., Yueping, G., Yueping, Y. Y., Zhiya, M., Xiaobing, W., & HuiZhou, L. (2004). Journal of Applied Polymer Science, 94, 2205–2211.CrossRefGoogle Scholar
  15. 15.
    Filipowska B. et al. (2011). New method for the antibacterial and antifungal modification of silver finished textiles & fibers textiles in eastern Europe 19, 124–128.Google Scholar
  16. 16.
    Kochuveedu, S. T., Kim, D. P., & Kim, D. H. (2012). Physical Chemistry C, 116, 2500–2506.CrossRefGoogle Scholar
  17. 17.
    Ganzoury, M. A., & Allam, N. K. (2015). Renewable and Sustainable Energy Reviews, 50, 1392–1404.CrossRefGoogle Scholar
  18. 18.
    McClure D. J., & Perez M. A. (3M Innovative Properties Company) USA. Pat. No. 7, 666,494.Google Scholar
  19. 19.
    Facibeni A., Bottani C. E., Dellasega D., Di Fonzo F., & Bogana M. P. (Polit.di Milano) USA Pat. No. 2011/0110999 A1.Google Scholar
  20. 20.
    Yong, K. T., Sahoo, Y., Swihart, M. T., & Prasad, P. (2006). Colloids and Surface; A, 290, 89–105.CrossRefGoogle Scholar
  21. 21.
    Chretien M. N., Wu Y., & Chopra N. (Xeron Corporation) USA Pat. No. 7,749,300 B2.Google Scholar
  22. 22.
    Scirè, S., Crisafulli, C., Giuffrida, S., Mazza, C., Riccobene, P. M., Pistone, A., Ventimiglia, G., Bongiorno, C., & Spinella, C. (2009). Applied Catalysis A, 367, 138–145.CrossRefGoogle Scholar
  23. 23.
    Luo, N., Mao, L., Jiang, L., Wu, Z., & Wu, D. (2009). Material Letters, 63, 154–156.CrossRefGoogle Scholar
  24. 24.
    Petralia S., & Ventimiglia G. USA Pat. N. US20150072164 A1.Google Scholar
  25. 25.
    Ventimiglia, G., & Motta, A. (2012). Sensors & Transducer Journal, 146, 59–68.Google Scholar
  26. 26.
    Lashdaf, M., et al. (2003). Applied Catalysis A: General, 241, 5.Google Scholar
  27. 27.
    Boitiaux, J. P., Cosyns, J., & Vasudevan, S. (1983). Studies in Surface Science and Catalysis, 16, 123.CrossRefGoogle Scholar
  28. 28.
    Lesage-Rosenberg, E., Valic, G., Dexpert, H., & Lagarde, P. (1986). Applied Catalysis, 22, 211–219.CrossRefGoogle Scholar
  29. 29.
    Lee, K. J., An, J.-H., Shin, J. S., Kim, D. H., Kim, C., Ozaki, H., & Koh, J. G. (2007). Nanotechnology, 18, 465201–465708.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Chemical WorksTremestieri EtneoItaly

Personalised recommendations