Skip to main content
Log in

Morphological and Biomolecules Dynamics of Phytopathogenic Fungi Under Stress of Silver Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Antifungal impact of silver nanoparticles (AgNPs) was evaluated on the growth, morphological, and biomolecules dynamics of Fusarium culmorum and Alternaria alternata. It was revealed that the different concentrations of AgNPs caused inhibition of fungal growth and deformations of fungal structures especially at high concentrations 40 and 60 ppm of AgNPs. A. alternata conidiospores at 40 ppm of AgNPs was sharply deformed and their longitudinal sections disappeared. On the other hand, these fungi failed to produce conidiospores in the presence of 60 ppm of AgNPs but produced chlamydospores. The effect of AgNPs on amino and fatty acids of F. culmorum was investigated compared with the influence of silver nitrate (AgNO3). AgNPs at different applied concentrations stimulated the synthesis of the most detected amino acids including aspartic acid, threonine, serine, glutamic acid, glycine, alanine, valine, leucine, tyrosine, arginine, proline, and lysine. The concentration of detected amino acids increased with increasing AgNPs up to 60 ppm. Aspartic acid, serine, glycine, alanine, arginine, leucine, and proline concentrations were 11.52, 6.53, 21.51, 12.51, 27.34, 9.40, and 22.17 μg/ml compared with their concentrations 5.90, 0.34, 21.51, 12.51, 14.97, 6.86, and 9.91 μg/ml at 40 ppm of AgNPs and AgNO3, respectively. Numerous fatty acids were detected in low percentage in treated F. culmorum with AgNO3 or AgNPs compared with untreated (control). Only butyric was detected in high percentage (29.58 and 33.04% at 20 ppm of AgNPs and AgNO3, respectively) compared with their percentage 15.93% in control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdelghany, T. M., Aisha, M., Al-Rajhi, H., Al Abboud, M. A., Alawlaqi, M. M., Magdah, G., Helmy, E. A. M., & Mabrouk, A. S. (2017). Recent advances in green synthesis of silver nanoparticles and their. Applications: About Future Directions. A Review. BioNanoSci. https://doi.org/10.1007/s12668-017-0413-3

    Google Scholar 

  2. Ahmad, T., Wani, I. A., Manzoor, N., Ahmed, J., & Asiri, A. M. (2013). Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 107, 227–234.

    Article  Google Scholar 

  3. Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.

    Article  Google Scholar 

  4. Abdelghany, T. M. (2013). Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indonesian. Journal of Biotechnology, 18, 75–82.

    Google Scholar 

  5. Abdelghany, T. M., Abdel, R., Shater, M., Al Abboud, M. A., & Alawlaqi, M. M. (2013). Silver nanoparticles biosynthesis by Fusarium moniliforme and their antimicrobial activity against some food-borne bacteria. Mycopathologia, 11, 1–7.

    Google Scholar 

  6. Kumar, C. G., & Sujitha, P. (2014). Green synthesis of Kocuran-functionalized silver glyconanoparticles for use as antibiofilm coatings on silicone urethral catheters. Nanotechnology, 25(32). https://doi.org/10.1088/0957-4484/25/32/325101

  7. Anna, O., Grzegorz, T., & Katarzyna, T. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of the Total Environment, 521–522, 305–314.

    Google Scholar 

  8. Kim, S., Jung, J., Lamsal, K., Min, J., & Lee, Y. (2012). Antifungal effects of silver nanoparticles against various plants pathogenic fungi. Mycobiology, 40, 53–58.

    Article  Google Scholar 

  9. Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., & Hasan, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science and Technology, 24, 192–196.

    Google Scholar 

  10. Kim, J., Lee, J., Kwon, S., & Jeong, S. (2009). Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. Journal Nanoscience Nanotechnology, 9, 1098–1102.

    Article  Google Scholar 

  11. Du, H., Lo, T. M., Sitompul, J., & Chang, M. W. (2012). Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance. Biochemical and Biophysical Research Communications, 424, 657–662.

    Article  Google Scholar 

  12. Zhi-Kuan, X., Qiu-Hua, M., Shu-Yi, L., De-Quan, Z., Lin, C., Yan-Li, T., & Rong-Ya, Y. (2016). The antifungal effect of silver nanoparticles on Trichosporon asahii. Journal of Microbiology, Immunology and Infection, 49, 182–188.

    Article  Google Scholar 

  13. Ellis, M. B., & Ellis, J. P. (1985). Microfungi on land plants. Croom Helm, London & Sydney: An Identification Handbook.

    Google Scholar 

  14. John, F.L. & Brett, A.S. (2006). The fusarium laboratory manual, Blackwell Publishing Ltd.

  15. Abd El-Mongy, M., & Abd El-Ghany, T. M. (2009). Field and laboratory studies for evaluating the toxicity of the insecticide Reldan on soil fungi. International Biodeterioration & Biodegradation, 63, 383–388.

    Article  Google Scholar 

  16. Min, J., Kim, K., Kim, S., Jung, J., Lamsal, K., Kim, S., Jung, M., & Lee, Y. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal, 25, 376–380.

    Article  Google Scholar 

  17. Katarzyna, P., Sława, G., Magdalena, G., Tomasz, R., Adriana, N., Egemen, A., & Beata, G. (2016). Silver nanoparticles: a mechanism of action on moulds. Metallomics, (12), 1294–1302.

  18. Sahar, M. O. (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology, 9, 34–42.

    Article  Google Scholar 

  19. Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S., & Lee, Y. S. (2011). Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology, 39, 194–199.

    Article  Google Scholar 

  20. Panácek, A., Kolár, M., Vecerová, R., Prucek, R., Soukupová, J., Krystof, V., Hamal, P., Zboril, R., & Kvítek, L. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30, 6333–6340.

    Article  Google Scholar 

  21. Namasivayam, S. K. R., Ganesh, S., & Avimanyu, B. (2011). Evaluation of anti-bacterial activity of silver nanoparticles synthesized from Candida glabrata and Fusarium oxysporum. Journal of International Medical Research, 1, 131–136.

    Google Scholar 

  22. Chen, X., & Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical application. Toxicology and Applied Pharmacology, 176, 1–12.

    Google Scholar 

  23. Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., & Sun, H. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome. Reserch, 5, 916–924.

    Article  Google Scholar 

  24. Navarro, E., Flavio, P., Bettina, W., Fabio, M., Ralf, K., Niksa, O., Laura, S., & Renata, B. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science Technology, 42, 8959–8964.

    Article  Google Scholar 

  25. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.

    Article  Google Scholar 

  26. Abdel Ghany, T. M., & Al Abboud, M. A. (2014). Capacity of growing, live and dead fungal biomass for safranin dye decolourization and their impact on fungal metabolites. Aust. J. Basic & Appl. Sci., 8, 489–499.

    Google Scholar 

  27. Habash, M. B., Park, A. J., Vis, E. C., Harris, R. J., & Khursigara, C. M. (2014). Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 biofilms. Antimicrobial Agents and Chemotherapy, 58, 5818–5830.

    Article  Google Scholar 

  28. Abdel-Ghany, T. M., Ganash, M., Bakri, M. M., and Al-Rajhi, A. M. H. (2018). Molecular characterization ofTrichoderma asperellum and lignocellulolytic activity on barley straw treated with silver nanoparticles. Bio Res., 13(1), 1729–1744.

  29. Dorau, B., Arango, R., & Green III, F. (Eds.). (2004). Proceedings of the 2nd wood-frame housing durability and disaster issues conference. Forest Products Society, Las Vegas, NV, October, 4–6, 133.

  30. Nancy, H., Philipp, H., Kristin, A., & Hermann, J. H. (2014). Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiology Letters, 355(1), 71–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Abdel Ghany.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganash, M., Abdel Ghany, T.M. & Omar, A.M. Morphological and Biomolecules Dynamics of Phytopathogenic Fungi Under Stress of Silver Nanoparticles. BioNanoSci. 8, 566–573 (2018). https://doi.org/10.1007/s12668-018-0510-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0510-y

Keywords

Navigation