Morphological and Biomolecules Dynamics of Phytopathogenic Fungi Under Stress of Silver Nanoparticles

Article

Abstract

Antifungal impact of silver nanoparticles (AgNPs) was evaluated on the growth, morphological, and biomolecules dynamics of Fusarium culmorum and Alternaria alternata. It was revealed that the different concentrations of AgNPs caused inhibition of fungal growth and deformations of fungal structures especially at high concentrations 40 and 60 ppm of AgNPs. A. alternata conidiospores at 40 ppm of AgNPs was sharply deformed and their longitudinal sections disappeared. On the other hand, these fungi failed to produce conidiospores in the presence of 60 ppm of AgNPs but produced chlamydospores. The effect of AgNPs on amino and fatty acids of F. culmorum was investigated compared with the influence of silver nitrate (AgNO3). AgNPs at different applied concentrations stimulated the synthesis of the most detected amino acids including aspartic acid, threonine, serine, glutamic acid, glycine, alanine, valine, leucine, tyrosine, arginine, proline, and lysine. The concentration of detected amino acids increased with increasing AgNPs up to 60 ppm. Aspartic acid, serine, glycine, alanine, arginine, leucine, and proline concentrations were 11.52, 6.53, 21.51, 12.51, 27.34, 9.40, and 22.17 μg/ml compared with their concentrations 5.90, 0.34, 21.51, 12.51, 14.97, 6.86, and 9.91 μg/ml at 40 ppm of AgNPs and AgNO3, respectively. Numerous fatty acids were detected in low percentage in treated F. culmorum with AgNO3 or AgNPs compared with untreated (control). Only butyric was detected in high percentage (29.58 and 33.04% at 20 ppm of AgNPs and AgNO3, respectively) compared with their percentage 15.93% in control.

Keywords

Morphological Biomolecules Fungi Stress Silver nanoparticles 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abdelghany, T. M., Aisha, M., Al-Rajhi, H., Al Abboud, M. A., Alawlaqi, M. M., Magdah, G., Helmy, E. A. M., & Mabrouk, A. S. (2017). Recent advances in green synthesis of silver nanoparticles and their. Applications: About Future Directions. A Review. BioNanoSci.  https://doi.org/10.1007/s12668-017-0413-3 Google Scholar
  2. 2.
    Ahmad, T., Wani, I. A., Manzoor, N., Ahmed, J., & Asiri, A. M. (2013). Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 107, 227–234.CrossRefGoogle Scholar
  3. 3.
    Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.CrossRefGoogle Scholar
  4. 4.
    Abdelghany, T. M. (2013). Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indonesian. Journal of Biotechnology, 18, 75–82.Google Scholar
  5. 5.
    Abdelghany, T. M., Abdel, R., Shater, M., Al Abboud, M. A., & Alawlaqi, M. M. (2013). Silver nanoparticles biosynthesis by Fusarium moniliforme and their antimicrobial activity against some food-borne bacteria. Mycopathologia, 11, 1–7.Google Scholar
  6. 6.
    Kumar, C. G., & Sujitha, P. (2014). Green synthesis of Kocuran-functionalized silver glyconanoparticles for use as antibiofilm coatings on silicone urethral catheters. Nanotechnology, 25(32).  https://doi.org/10.1088/0957-4484/25/32/325101
  7. 7.
    Anna, O., Grzegorz, T., & Katarzyna, T. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of the Total Environment, 521–522, 305–314.Google Scholar
  8. 8.
    Kim, S., Jung, J., Lamsal, K., Min, J., & Lee, Y. (2012). Antifungal effects of silver nanoparticles against various plants pathogenic fungi. Mycobiology, 40, 53–58.CrossRefGoogle Scholar
  9. 9.
    Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., & Hasan, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science and Technology, 24, 192–196.Google Scholar
  10. 10.
    Kim, J., Lee, J., Kwon, S., & Jeong, S. (2009). Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. Journal Nanoscience Nanotechnology, 9, 1098–1102.CrossRefGoogle Scholar
  11. 11.
    Du, H., Lo, T. M., Sitompul, J., & Chang, M. W. (2012). Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance. Biochemical and Biophysical Research Communications, 424, 657–662.CrossRefGoogle Scholar
  12. 12.
    Zhi-Kuan, X., Qiu-Hua, M., Shu-Yi, L., De-Quan, Z., Lin, C., Yan-Li, T., & Rong-Ya, Y. (2016). The antifungal effect of silver nanoparticles on Trichosporon asahii. Journal of Microbiology, Immunology and Infection, 49, 182–188.CrossRefGoogle Scholar
  13. 13.
    Ellis, M. B., & Ellis, J. P. (1985). Microfungi on land plants. Croom Helm, London & Sydney: An Identification Handbook.Google Scholar
  14. 14.
    John, F.L. & Brett, A.S. (2006). The fusarium laboratory manual, Blackwell Publishing Ltd.Google Scholar
  15. 15.
    Abd El-Mongy, M., & Abd El-Ghany, T. M. (2009). Field and laboratory studies for evaluating the toxicity of the insecticide Reldan on soil fungi. International Biodeterioration & Biodegradation, 63, 383–388.CrossRefGoogle Scholar
  16. 16.
    Min, J., Kim, K., Kim, S., Jung, J., Lamsal, K., Kim, S., Jung, M., & Lee, Y. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal, 25, 376–380.CrossRefGoogle Scholar
  17. 17.
    Katarzyna, P., Sława, G., Magdalena, G., Tomasz, R., Adriana, N., Egemen, A., & Beata, G. (2016). Silver nanoparticles: a mechanism of action on moulds. Metallomics, (12), 1294–1302.Google Scholar
  18. 18.
    Sahar, M. O. (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology, 9, 34–42.CrossRefGoogle Scholar
  19. 19.
    Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S., & Lee, Y. S. (2011). Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology, 39, 194–199.CrossRefGoogle Scholar
  20. 20.
    Panácek, A., Kolár, M., Vecerová, R., Prucek, R., Soukupová, J., Krystof, V., Hamal, P., Zboril, R., & Kvítek, L. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30, 6333–6340.CrossRefGoogle Scholar
  21. 21.
    Namasivayam, S. K. R., Ganesh, S., & Avimanyu, B. (2011). Evaluation of anti-bacterial activity of silver nanoparticles synthesized from Candida glabrata and Fusarium oxysporum. Journal of International Medical Research, 1, 131–136.Google Scholar
  22. 22.
    Chen, X., & Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical application. Toxicology and Applied Pharmacology, 176, 1–12.Google Scholar
  23. 23.
    Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., & Sun, H. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome. Reserch, 5, 916–924.CrossRefGoogle Scholar
  24. 24.
    Navarro, E., Flavio, P., Bettina, W., Fabio, M., Ralf, K., Niksa, O., Laura, S., & Renata, B. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science Technology, 42, 8959–8964.CrossRefGoogle Scholar
  25. 25.
    Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.CrossRefGoogle Scholar
  26. 26.
    Abdel Ghany, T. M., & Al Abboud, M. A. (2014). Capacity of growing, live and dead fungal biomass for safranin dye decolourization and their impact on fungal metabolites. Aust. J. Basic & Appl. Sci., 8, 489–499.Google Scholar
  27. 27.
    Habash, M. B., Park, A. J., Vis, E. C., Harris, R. J., & Khursigara, C. M. (2014). Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 biofilms. Antimicrobial Agents and Chemotherapy, 58, 5818–5830.CrossRefGoogle Scholar
  28. 28.
    Abdel-Ghany, T. M., Ganash, M., Bakri, M. M., and Al-Rajhi, A. M. H. (2018). Molecular characterization ofTrichoderma asperellum and lignocellulolytic activity on barley straw treated with silver nanoparticles. Bio Res., 13(1), 1729–1744.Google Scholar
  29. 29.
    Dorau, B., Arango, R., & Green III, F. (Eds.). (2004). Proceedings of the 2nd wood-frame housing durability and disaster issues conference. Forest Products Society, Las Vegas, NV, October, 4–6, 133.Google Scholar
  30. 30.
    Nancy, H., Philipp, H., Kristin, A., & Hermann, J. H. (2014). Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiology Letters, 355(1), 71–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Magdah Ganash
    • 1
  • T. M. Abdel Ghany
    • 2
    • 3
  • A. M. Omar
    • 4
  1. 1.Biology Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Botany and Microbiology Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  3. 3.Biology Department, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  4. 4.Microbiology Laboratory, Conservation CenterGrand Egyptian MuseumCairoEgypt

Personalised recommendations