Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 394–406 | Cite as

Effect of Iron Oxide Nanoparticle Shape on Doxorubicin Drug Delivery Toward LNCaP and PC-3 Cell Lines

  • T. R. Nizamov
  • A. S. Garanina
  • I. S. Grebennikov
  • O. A. Zhironkina
  • O. S. Strelkova
  • I. B. Alieva
  • I. I. Kireev
  • M. A. Abakumov
  • A. G. Savchenko
  • A. G. Majouga
Article
  • 76 Downloads

Abstract

In this paper, we investigated the delivery efficiency of doxorubicin by magnetite nanoparticles with different shape to LNCaP and PC-3 prostate cancer cell lines. Cubic and spherical nanoparticles of magnetite were synthesized in organic medium and hydrophilized by non-ionic surfactant Pluronic F127—polyethylene-polypropylene oxide polymer. Doxorubicin was loaded into hydrophobic region of polymeric shell. We have observed that cytotoxicity and distribution of doxorubicin in cells changed significantly in case of drug loaded into nanoparticles in comparison with free doxorubicin. We have shown that this change is due to two main reasons: (1) slower internalization of nanoparticles by cells compared to free doxorubicin and (2) slow and incomplete release of doxorubicin from nanoparticle polymer shell. Interestingly, nanoparticle shape influenced cytotoxicity and the dynamics of drug accumulation inside cancer cells. We have found that doxorubicin-loaded cubic nanoparticles were more toxic for both cell lines compared to spherical ones. Moreover, doxorubicin from cubic nanoparticles accumulated in cells faster than the drug loaded in spherical nanoparticles. So, our work shows that for efficient drug delivery, not only size and coating should be taken into account but also the shape of initial core as it plays an important role in nanoparticle interaction with cells.

Keywords

Iron oxide nanoparticles Nanoparticle shape Drug delivery Doxorubicin Human prostate cancer cell lines 

Notes

Acknowledgements

The authors thank the Program of Moscow State University Development (PNR 5.13) for assistance in the study of nanoparticle intracellular localization by JEM-1400 (JEOL) transmission electron microscope.

Author Contributions

A.G.M. conceived the research and guided the project. T.R.N. synthesized, modified, and characterized nanoparticles. G.I.S. carried out XRD and magnetic measurements. A.S.G. conducted the biological experiments. O.A.Z. prepared ultrathin sections for transmission electron microscopy analysis. T.R.N., A.S.G., M.A.A., A.G.S., and A.G.M. discussed the results. T.R.N. and A.S.G. wrote the manuscript. O.S.S., M.A.A., I.B.A., I.I.K., A.G.M., and A.G.S. critically revised the manuscript. All authors approved the final version of the manuscript.

Funding information

The work was supported by the Ministry of Education and Science of the Russian Federation (grant no. 14.578.21.0201 (RFMEFI57816X0201)).

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

References

  1. 1.
    Ling, D., & Hyeon, T. (2013). Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small, 9, 1450–1466.  https://doi.org/10.1002/smll.201202111.
  2. 2.
    Majewski, P., & Thierry, B. (2007). Functionalized Magnetite Nanoparticles - Synthesis, Properties, and Bio-Applications. Critical Reviews in Solid State and Materials Sciences, 32, 203–215.  https://doi.org/10.1080/10408430701776680.CrossRefGoogle Scholar
  3. 3.
    Xie, J., Huang, J., Li, X., & Sun, S. (2009). X. C. Iron oxide nanoparticle platform for biomedical applications. Current Medicinal Chemistry, 16, 1278–1294.  https://doi.org/10.2174/092986709787846604.CrossRefGoogle Scholar
  4. 4.
    Oh, J. K., & Park, J. M. (2011). Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Progress in Polymer Science, 36, 168–189.  https://doi.org/10.1016/j.progpolymsci.2010.08.005.CrossRefGoogle Scholar
  5. 5.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., et al. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chemical Reviews, 108, 2064–2110.  https://doi.org/10.1021/cr068445e.CrossRefGoogle Scholar
  6. 6.
    Srinivasan, S., Paknikar, K., Gajbhiye, V., & Bodas, D. (2017). Magneto-conducting Core/Shell Nanoparticles for Biomedical Applications. Chemistry of Nanomaterials, 3, 1–15.  https://doi.org/10.1002/cnma.201700278.CrossRefGoogle Scholar
  7. 7.
    Lin, J. J., Chen, J. S., Huang, S. J., Ko, J. H., Wang, Y. M., Chen, T. L., et al. (2009). Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials, 30, 5114–5124.  https://doi.org/10.1016/j.biomaterials.2009.06.004.CrossRefGoogle Scholar
  8. 8.
    Regmi, R., Bhattarai, S. R., Sudakar, C., Wani, A. S., Cunningham, R., Vaishnava, P. P., et al. (2010). Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels. Journal of Materials Chemistry, 20, 6158–6163.  https://doi.org/10.1039/C0jm00844c.CrossRefGoogle Scholar
  9. 9.
    Regmi, R., Bhattarai, S. R., Sudakar, C., Wani, A. S., Cunningham, R., Vaishnava, P. P., et al. (2010). Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels. Journal of Materials Chemistry, 20, 6158–6163.  https://doi.org/10.1039/C0jm00844c.CrossRefGoogle Scholar
  10. 10.
    Xu, Y., Zhu, Y., Kaskel, S., Wang, L., Shi, J., Zheng, Y., et al. (2015). A smart magnetic nanosystem with controllable drug release and hyperthermia for potential cancer therapy. RSC Advances, 5, 99875–99883.  https://doi.org/10.1039/C5RA17053B.CrossRefGoogle Scholar
  11. 11.
    Khandhar, A. P., Ferguson, R. M., & Krishnan, K. M. (2011). Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. Journal of Applied Physics, 109, 2011–2014.  https://doi.org/10.1063/1.3556948.CrossRefGoogle Scholar
  12. 12.
    Monnier, C. A., Burnand, D., Rothen-Rutishauser, B., Lattuada, M., & Petri-Fink, A. (2014). Magnetoliposomes: Opportunities and challenges. European Journal of Nanomedicine, 6, 201–215.  https://doi.org/10.1515/ejnm-2014-0042.CrossRefGoogle Scholar
  13. 13.
    Cheng, D., Li, X., Zhang, G., & Shi, H. (2014). Morphological effect of oscillating magnetic nanoparticles in killing tumor cells. Nanoscale Research Letters, 9, 1–8.  https://doi.org/10.1186/1556-276X-9-195.CrossRefGoogle Scholar
  14. 14.
    Andhariya, N., Chudasama, B., Mehta, R. V., & Upadhyay, R. V. (2011). Biodegradable thermoresponsive polymeric magnetic nanoparticles: A new drug delivery platform for doxorubicin. Journal of Nanoparticle Research, 13, 1677–1688.  https://doi.org/10.1007/s11051-010-9921-6.CrossRefGoogle Scholar
  15. 15.
    Tavano, L., Vivacqua, M., Carito, V., Muzzalupo, R., Caroleo, M. C., & Nicoletta, F. (2013). Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids and Surfaces B Biointerfaces, 102, 803–807.  https://doi.org/10.1016/j.colsurfb.2012.09.019.CrossRefGoogle Scholar
  16. 16.
    Jain, T. K., Foy, S. P., Erokwu, B., Dimitrijevic, S., Flask, C. A., & Labhasetwar, V. (2009). Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials, 30, 6748–6756.  https://doi.org/10.1016/j.biomaterials.2009.08.042.CrossRefGoogle Scholar
  17. 17.
    Fratila, R. M., Rivera-Fernández, S., & de la Fuente, J. M. (2015). Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials. Nanoscale, 7, 8233–8260.  https://doi.org/10.1039/C5NR01100K.CrossRefGoogle Scholar
  18. 18.
    Sajanlal, P. R., Sreeprasad, T. S., Samal, A. K., & Pradeep, T. (2011). Anisotropic nanomaterials: structure, growth, assembly, and functions. Nanotechnology Reviews, 2, 5883.  https://doi.org/10.3402/nano.v2i0.5883.Google Scholar
  19. 19.
    Yang, H., Liu, C., Yang, D., Zhang, H., & Xi, Z. (2009). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. Journal of Applied Toxicology, 29, 69–78.  https://doi.org/10.1002/jat.1385.CrossRefGoogle Scholar
  20. 20.
    Nair, S., Sasidharan, A., Divya Rani, V. V., Menon, D., Nair, S., Manzoor, K., et al. (2009). Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science Materials in Medicine, 20, 235–241.  https://doi.org/10.1007/s10856-008-3548-5.CrossRefGoogle Scholar
  21. 21.
    Huang, X., Teng, X., Chen, D., Tang, F., & He, J. (2010). The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 31, 438–448.  https://doi.org/10.1016/j.biomaterials.2009.09.060.CrossRefGoogle Scholar
  22. 22.
    Xiong, Y., Brunson, M., Huh, J., Huang, A., Coster, A., Wendt, K., et al. (2013). The role of surface chemistry on the toxicity of Ag nanoparticles. Small, 9, 2628–2638.  https://doi.org/10.1002/smll.201202476.CrossRefGoogle Scholar
  23. 23.
    Tarantola, M., Pietuch, A., Schneider, D., Rother, J., Sunnick, E., Rosman, C., et al. (2011). Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology, 5, 254–268.  https://doi.org/10.3109/17435390.2010.528847.CrossRefGoogle Scholar
  24. 24.
    Tacar, O., Sriamornsak, P., & Dass, C. R. (2013). Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. Journal of Pharmacy and Pharmacology, 65, 157–170.  https://doi.org/10.1111/j.2042-7158.2012.01567.x.CrossRefGoogle Scholar
  25. 25.
    Coelho, A. R., Martins, T. R., Couto, R., Deus, C., Pereira, C. V., Simões, R. F., et al. (1863). Berberine-induced cardioprotection and Sirt3 modulation in doxorubicin-treated H9c2 cardiomyoblasts. Biochimica et Biophysica Acta - Molecular Basis Disease, 2017, 2904–2923.  https://doi.org/10.1016/j.bbadis.2017.07.030.Google Scholar
  26. 26.
    Wang, J., Gong, C., Wang, Y., & Wu, G. (2014). Magnetic and pH sensitive drug delivery system through NCA chemistry for tumor targeting. RSC Advances, 4, 15856–15862.  https://doi.org/10.1039/C4RA00660G.CrossRefGoogle Scholar
  27. 27.
    Gautier, J., Munnier, E., Paillard, A., Hervé, K., Douziech-Eyrolles, L., Soucé, M., et al. (2012). A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. International Journal of Pharmaceutics, 423, 16–25.  https://doi.org/10.1016/j.ijpharm.2011.06.010.CrossRefGoogle Scholar
  28. 28.
    Guo, X., Shi, C., Yang, G., Wang, J., Cai, Z., & Zhou, S. (2014). Dual-Responsive Polymer Micelles for Target-Cell-Speci fi c Anticancer Drug Delivery. Chemistry of Materials, 26, 4405–4418.  https://doi.org/10.1021/cm5012718.CrossRefGoogle Scholar
  29. 29.
    Yu, W. W., Falkner, J. C., Yavuz, C. T., & Colvin, V. L. (2004). Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chemical Communications, 2306–2307.  https://doi.org/10.1039/b409601k.
  30. 30.
    Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., et al. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 3, 891–895.  https://doi.org/10.1038/nmat1251.CrossRefGoogle Scholar
  31. 31.
    Hai, H. T., Yang, H. T., Kura, H., Hasegawa, D., Ogata, Y., Takahashi, M., et al. (2010). Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. Journal of Colloid and Interface Science, 346, 37–42.  https://doi.org/10.1016/j.jcis.2010.02.025.CrossRefGoogle Scholar
  32. 32.
    Simon, T., Boca, S., Biro, D., Baldeck, P., & Astilean, S. (2013). Gold-Pluronic core-shell nanoparticles: Synthesis, characterization and biological evaluation. Journal of Nanoparticle Research, 15(1578), 1–8.  https://doi.org/10.1007/s11051-013-1578-5.Google Scholar
  33. 33.
    Gonzales, M., & Krishnan, K. M. (2007). Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biomedical applications. Journal of Magnetism and Magnetic Materials, 311, 59–62.  https://doi.org/10.1016/j.jmmm.2006.10.1150.CrossRefGoogle Scholar
  34. 34.
    Kireev, I., Lakonishok, M., Liu, W., Joshi, V. N., Powell, R., & Belmont, A. S. (2008). In vivo immunogold labeling confirms large-scale chromatin folding motifs. Nature Methods, 5, 311–313.  https://doi.org/10.1038/nmeth.1196.CrossRefGoogle Scholar
  35. 35.
    Zhou, Z., Zhu, X., Wu, D., Chen, Q., Huang, D., Sun, C., et al. (2015). Anisotropic shaped iron oxide nanostructures: Controlled synthesis and proton relaxation shortening effects. Chemistry of Materials, 27, 3505–3515.  https://doi.org/10.1021/acs.chemmater.5b00944.CrossRefGoogle Scholar
  36. 36.
    Speelmans, G., Staffhorst, R. W. H. M., Steenbergen, H. G., & De Kruijff, B. (1996). Transport of the anti-cancer drug doxorubicin across cytoplasmic membranes and membranes composed of phospholipids derived from Escherichia coli occurs via a similar mechanism. Biochimica et Biophysica Acta - Biomembranes, 1284, 240–246.  https://doi.org/10.1016/S0005-2736(96)00137-X.CrossRefGoogle Scholar
  37. 37.
    Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nature Reviews Cancer, 9, 338–350.  https://doi.org/10.1038/nrc2607.CrossRefGoogle Scholar
  38. 38.
    Blatt, N. L., Mingaleeva, R. N., Khaiboullina, S. F., Lombardi, V. C., & Rizvanov, A. A. (2013). Application of cell and tissue culture systems for anticancer drug screening. World Applied Science Journal, 23, 315–325.  https://doi.org/10.5829/idosi.wasj.2013.23.03.13064.Google Scholar
  39. 39.
    Halamoda Kenzaoui, B., Chapuis Bernasconi, C., Guney-Ayra, S., & Juillerat-Jeanneret, L. (2012). Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. The Biochemical Journal, 441, 813–821.  https://doi.org/10.1042/BJ20111252.CrossRefGoogle Scholar
  40. 40.
    Alieva, I. B., Kireev, I., Garanina, A. S., Alyabyeva, N., Ruyter, A., Strelkova, O. S., et al. (2016). Magnetocontrollability of Fe7C3@C superparamagnetic nanoparticles in living cells. Journal of Nanobiotechnology, 14, 67.  https://doi.org/10.1186/s12951-016-0219-4.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. R. Nizamov
    • 1
  • A. S. Garanina
    • 1
    • 2
  • I. S. Grebennikov
    • 1
  • O. A. Zhironkina
    • 3
  • O. S. Strelkova
    • 3
  • I. B. Alieva
    • 3
  • I. I. Kireev
    • 3
  • M. A. Abakumov
    • 1
    • 4
  • A. G. Savchenko
    • 1
  • A. G. Majouga
    • 1
    • 2
    • 5
  1. 1.National University of Science and Technology “MISiS”MoscowRussia
  2. 2.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Pirogov Russian National Research Medical University (RNRMU)MoscowRussia
  5. 5.Dmitry Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations