Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 379–383 | Cite as

Effects of Serotonin Receptor Antagonist Methiothepin on Membrane Potential of Premotor Interneurons of Naïve and Learned Snails

  • Vyatcheslav V. Andrianov
  • Tatiana Kh. Bogodvid
  • Irina B. Deryabina
  • Aleksandra N. Golovchenko
  • Lyudmila N. Muranova
  • Khalil L. Gainutdinov
Article
  • 35 Downloads

Abstract

It was shown that the application of methiothepin, the antagonist of serotonin (5-HT) receptors, caused a decrease in the membrane potential of the high-threshold premotor interneurons LPa3 and RPa3 of the intact snails and its increase to the previous level after the subsequent application of 5-HT in vitro. The application of methiothepin also led to a decrease in the membrane potential of these neurons, but the subsequent application of 5-HT did not lead to the return of the membrane potential to the previous level in animals trained in defensive reflex. It can be assumed that conditioning of the defensive reflex causes a state change of the 5-HT receptor system of premotor interneurons of defensive behavior.

Keywords

Serotonin Methiothepin Identified neurons Membrane and threshold potentials Learning Snail 

References

  1. 1.
    Balaban, P. M., Vehovzsky, A., Maksimova, O. A., & Zakharov, I. S. (1987). Effect of 5.7-dihydroxytryptamine on the food-aversive conditioning in the snail Helix lucorum L. Brain Research, 404, 201–210.CrossRefGoogle Scholar
  2. 2.
    Glanzman, D. L., Mackey, S. L., Hawkins, R. D., Dyke, A. M., Lloyd, P. E., & Kandel, E. R. (1989). Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock. The Journal of Neuroscience, 12, 4200–4213.Google Scholar
  3. 3.
    Gainutdinov, K. L., Andrianov, V. V., & Gainutdinova, T. K. (1999). The action of the neurotoxins 5,6-dihydroxytryptamine and p-chlorphenylalanine on the electrical activity parameters of the command neurons during long-term sensitization and learning in the snail. Zhurnal vysshei nervnoi deiatelnosti imeni I. P. Pavlova (Russian), 49, 48–58.Google Scholar
  4. 4.
    Sakharov, D. A. (2012). Biological substrate for generation of behavioral acts. Zurnal Obchei Biologii (Russian), 73, 324–348.Google Scholar
  5. 5.
    Ierusalimskii, V. N., & Balaban, P. M. (2010). Serotonergic system of neurons in the CNS of terrestrial snail: morphology, ontogenesis, control of behavior. Zhurnal Vysshei Nervnoi Deiatilnosti Im I P Pavlova (Russian), 60, 515–524.Google Scholar
  6. 6.
    Balaban, P. М., Bravarenko, N. I., Maksimova, O. A., Nikitin, E., Ierusalimsky, V. N., & Zakharov, I. S. (2001). A single serotoninergic modulatory cell can mediate reinforcement in the withdrawal network of the terrestrial snail. Neurobiology of Learning and Memory, 75, 30–50.  https://doi.org/10.1006/nlme.1999.3953.CrossRefGoogle Scholar
  7. 7.
    Zakharov, I. S., Ierusalimsky, V. N., & Balaban, P. M. (1995). Pedal serotonergic neurons modulate the synaptic input of withdrawal interneurons of Helix. Invertebrate Neuroscience, 1, 41–52.  https://doi.org/10.1007/BF02331831.CrossRefGoogle Scholar
  8. 8.
    Clark, G. A., & Kandel, E. R. (1993). Induction of long-term facilitation in Aplysia sensory neurones by local application of serotonin to remote synapses. Proceedings of the National Academy of Sciences of the United States of America, 90, 11411–11415.CrossRefGoogle Scholar
  9. 9.
    Sugita, S., Baxter, D. A., & Byrne, J. H. (1997). Differential effects of 4-aminopyridine, serotonin, and phorbol esters on facilitation of sensorimotor connections in Aplysia. Journal of Neurophysiology, 77, 177–185.CrossRefGoogle Scholar
  10. 10.
    Malyshev, A. Y., Bravarenko, N. I., Pivovarov, A. S., & Balaban, P. M. (1998). Effects of serotonin levels on postsynaptically induced potentiation of snail neuron responses. Neuroscience and Behavioral Physiology, 28, 556–563.CrossRefGoogle Scholar
  11. 11.
    Shevelkin, A. V., Nikitin, V. P., Kozyrev, S. A., Samoilov, M. O., & Sherstnev, V. V. (1998). Serotonin imitates several of the neuronal effects of nociceptive sensitization in the common snail. Neuroscience and Behavioral Physiology, 28, 547–555.CrossRefGoogle Scholar
  12. 12.
    Hart, A. K., Fioravante, D., Liu, R.-Y., Phares, G. A., Cleary, L. J., & Byrne, J. H. (2011). Serotonin-mediated synapsin expression is necessary for long-term facilitation of the Aplysia sensorimotor synapse. The Journal of Neuroscience, 31, 18401–18411.CrossRefGoogle Scholar
  13. 13.
    Hu, J.-Y., Baussi, O., Levine, A., Chen, Y., & Schacher, S. (2011). Persistent long-term synaptic plasticity requires activation of a new signaling pathway by additional stimuli. The Journal of Neuroscience, 31, 8841–8850.CrossRefGoogle Scholar
  14. 14.
    Timoshenko, A. K., Shevelkin, A. V., Nikitin, V. P., & Sherstnev, V. V. (2014). Live-cell imaging microscopy and quantitative analyses of Ca2+–dependent effects of neurotransmitters on DNA in snails neurons. Biophysics, 59, 91–97.CrossRefGoogle Scholar
  15. 15.
    Abramova, M. S., Nistratova, V. L., Moskvitin, A. A., & Pivovarov, A. S. (2006). Methiothepin-sensitive serotonin receptors are involved in the postsynaptic mechanism of sensitization of defensive reaction of snail. Neuroscience and Behavioral Physiology, 36, 589–596.CrossRefGoogle Scholar
  16. 16.
    Il-Han, J., Janes, T., & Lukowiak, K. (2010). The role of serotonin in the enhancement of long-term memory resulting from predator detection in Lymnaea. J. Experim. Biol., 213, 3603–3614.CrossRefGoogle Scholar
  17. 17.
    Pivovarov, A. S., & Nistratova, V. L. (2003). Modulatory serotonin receptors on the soma of command neurons in edible snail. Bull Experim Biol Med, 136, 114–116.  https://doi.org/10.1023/A:1026390117562.CrossRefGoogle Scholar
  18. 18.
    Gainutdinova, T. K., Andrianov, V. V., Gainutdinov, K. L., Mukhamedshina, D. I., & Tagirova, R. R. (2003). Duration in electrical characteristics of command neurons after defensive conditioning in snail. Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova (Russian), 53, 379–382.Google Scholar
  19. 19.
    Andrianov, V. V., Bogodvid, T. K., Deryabina, I. B., Golovchenko, A. N., Muranova, L. N., Tagirova, R. R., Vinarskaya, A. K., & Gainutdinov, K. L. (2015). Modulation of defensive reflex conditioning in snails by serotonin. Frontiers in Behavioral Neuroscience, 9:Article 279, 1–12.  https://doi.org/10.3389/fnbeh.2015.00279.CrossRefGoogle Scholar
  20. 20.
    Balaban PM, Zakharov IS (1992). Learning and development—bases of two phenomena. M.: Nauka (Russian), 151 p.Google Scholar
  21. 21.
    Gainutdinov, K. L., Gainutdinova, T. H., & Chekmarev, L. Y. (1996). Changes of electrical characteristics of command neurons during defensive reflex conditioning in terrestrial snail. Zhurnal vysshei nervnoi deiatelnosti imeni I. P. Pavlova (Russian), 46, 614–616.Google Scholar
  22. 22.
    Pivovarov, A. S., Murzina, G. B., Makhnovsky, D. A., & Tret’yakova, M. S. (2014). Possibility of “comet-like” transport of acetylcholine receptors in command Helix neurons in cellular analogue of habituation. World J. Neurosci, 4, 133–143.CrossRefGoogle Scholar
  23. 23.
    Kiss, T., Hiripi, L., Papp, N., & Elekes, K. (2003). Dopamine and serotonin receptors mediating contractions of the snail, Helix pomatia, salivary duct. Neuroscience, 116, 775–790.CrossRefGoogle Scholar
  24. 24.
    Krobert, K. A., Andressen, K. W., & Levy, F. O. (2006). Heterologous desensitization is evoked by both agonist and antagonist stimulation of the human 5-HT(7) serotonin receptor. Europ. J. Pharmacol., 532, 1–10.CrossRefGoogle Scholar
  25. 25.
    Dumitriu, B., Cohen, J. E., Wan, Q., Negroiu, A. M., & Abrams, T. W. (2006). Serotonin receptor antagonists discriminate between PKA- and PKC-mediated plasticity in Aplysia sensory neurons. Journal of Neurophysiology, 95, 2713–2720.  https://doi.org/10.1152/jn.00642.2005.CrossRefGoogle Scholar
  26. 26.
    Abramova, M. S., Moskvitin, A. A., & Pivovarov, A. S. (2007). Effects of protein synthesis inhibitors on the sensitization of a defensive responses in common snails and potentiation of the cholinosensitivity of command neurons. Neuroscience and Behavioral Physiology, 37, 443–449.CrossRefGoogle Scholar
  27. 27.
    Weragoda, M. S., & Walters, E. T. (2007). Serotonin induces memory-like, rapamycin-sensitive hyperexcitability in sensory axons of Aplysia that contributes to injury responses. Journal of Neurophysiology, 98, 1231–1239.CrossRefGoogle Scholar
  28. 28.
    Daoudal, G., & Debanne, D. (2003). Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learning & Memory, 10, 456–465.CrossRefGoogle Scholar
  29. 29.
    Gainutdinov, K. L., Andrianov, V. V., & Gainutdinova, T. K. (2011). Changes of the neuronal membrane excitability as cellular mechanisms of learning and memory. Uspekhi Physiologicheskikh Nauk (Russian), 42, 33–52.Google Scholar
  30. 30.
    Nikitin, E. S., Balaban, P. M., & Kemenes, G. (2013). Nonsynaptic plasticity underlies a compartmentalized increase in synaptic efficacy after classical conditioning. Current Biology, 23, 614–619.CrossRefGoogle Scholar
  31. 31.
    Beregovoi, N. A., & Gainutdinov, K. L. (1988). Depolarizing shift of membrane potential of the command neurons of snail avoidance reflex at long-term sensitization. Doklady Akademii Nauk SSSR., 301, 989–992.Google Scholar
  32. 32.
    Gainutdinov, K. L., & Beregovoi, N. A. (1994). Long-term sensitization in snail: electrophysiological correlations in command neurons of avoidance behavior. Zhurnal vysshei nervnoi deiatelnosti imeni I. P. Pavlova (Russian), 44, 307–315.Google Scholar
  33. 33.
    Cleary, L. J., Lee, W. L., & Byrne, J. H. (1998). Cellular correlates of long-term sensitization in Aplysia. The Journal of Neuroscience, 18, 5988–5998.Google Scholar
  34. 34.
    Kiss, T. (2003). Evidence for a persistent Na-conductance in identified command neurones of the snail, Helix pomatia. Brain Research, 989, 16–25.CrossRefGoogle Scholar
  35. 35.
    Mozzachiodi, R., Lorenzetti, F. D., Baxter, D. A., & Byrne, J. H. (2008). Changes in neuronal excitability serve as a mechanism of long-term memory for operant conditioning. Nature Neurosci, 11, 1146–1148.  https://doi.org/10.1038/nn.2184.CrossRefGoogle Scholar
  36. 36.
    Wu, N., Enomoto, A., Tanaka, S., Hsiao, C.-F., Nykamp, D. Q., Izhikevich, E., & Chandler, S. H. (2005). Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. Journal of Neurophysiology, 93, 2710–2722.CrossRefGoogle Scholar
  37. 37.
    Nagakura, I., Ormond, J., & Sossin, W. S. (2008). Mechanisms regulating ApTrk1, a Trk-like receptor in Aplysia sensory neurons. Journal of Neuroscience Research, 86, 2876–2883.  https://doi.org/10.1002/jnr.21741.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vyatcheslav V. Andrianov
    • 1
  • Tatiana Kh. Bogodvid
    • 1
    • 2
  • Irina B. Deryabina
    • 1
  • Aleksandra N. Golovchenko
    • 1
  • Lyudmila N. Muranova
    • 1
  • Khalil L. Gainutdinov
    • 1
  1. 1.Laboratory of Neurorehabilitation of Motor DisordersInstitute of Fundamental Medicine and Biology of Kazan Federal UniversityKazanRussia
  2. 2.Volga Region State Academy of Physical Culture, Sport and TourismKazanRussia

Personalised recommendations