Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 43–59 | Cite as

Diversity of Bacterial Synthesis of Silver Nanoparticles

  • Aqib Javaid
  • Sandra Folarin Oloketuyi
  • Mohammad Mansoob Khan
  • Fazlurrahman Khan
Article

Abstract

There are growing demands for the synthesis of silver nanoparticles (AgNPs) using green technology approaches due to their cost-effective and eco-friendly nature. Although, there are considerable number of research reports available related to biological means such as using plants, fungi, and bacteria-assisted synthesis of silver nanoparticles. In recent trends, synthesis of AgNPs using bacteria is considered most attractive, simple, green, and cost-effective source(s). This leads to the increase in the number of reports on AgNPs synthesized by different bacterial genera (both gram-positive and gram-negative) and species. The present review article describes the diversity of bacteria (both gram-positive and gram-negative) capable of synthesizing AgNPs and possible applications of AgNPs. Thus, increasing the number of bacteria for the synthesis of AgNPs will be helpful to combat pathogenic bacteria and will open doors for novel avenues and applications.

Keywords

Bacteria Diversity Extracellular Intracellular Silver nanoparticles 

Notes

Funding Information

The authors acknowledged the Department of Biotechnology, School of Engineering and Technology, Sharda University, India for the financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kang, Y. O., Jung, J. Y., Cho, D., Kwon, O. H., Cheon, J. Y., & Park, W. H. (2016). Antimicrobial silver chloride nanoparticles stabilized with chitosan oligomer for the healing of burns. Materials (Basel), 9(4), 215.  https://doi.org/10.3390/ma9040215.CrossRefGoogle Scholar
  2. 2.
    Singh, R., Shedbalkar, U. U., Wadhwani, S. A., & Chopade, B. A. (2015). Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied Microbiology and Biotechnology, 99(11), 4579–4593.  https://doi.org/10.1007/s00253-015-6622-1.CrossRefGoogle Scholar
  3. 3.
    Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research Pharmaceutical Sciences, 9(6), 385–406.Google Scholar
  4. 4.
    Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2017). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399–408.  https://doi.org/10.1007/s13204-015-0449-z.CrossRefGoogle Scholar
  5. 5.
    Shankar, T., Karthiga, P., Swarnalatha, K., & Rajkumar, K. (2017). Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resource-Efficient Technologies, 3(3), 303–308.  https://doi.org/10.1016/j.reffit.2017.01.004.CrossRefGoogle Scholar
  6. 6.
    Prathna, T. C., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1), 212–216.  https://doi.org/10.1016/j.colsurfa.2010.12.047.CrossRefGoogle Scholar
  7. 7.
    Zhao, X., Xia, Y., Li, Q., Ma, X., Quan, F., Geng, C., & Han, Z. (2014). Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 180–188.  https://doi.org/10.1016/j.colsurfa.2013.12.008.CrossRefGoogle Scholar
  8. 8.
    Pingali, K. C., Rockstraw, D. A., & Deng, S. (2005). Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Science and Technology, 39(10), 1010–1014.  https://doi.org/10.1080/02786820500380255.CrossRefGoogle Scholar
  9. 9.
    Shi, X., Wang, S., Duan, X., & Zhang, Q. (2008). Synthesis of nano Ag powder by template and spray pyrolysis technology. Materials Chemistry and Physics, 112(3), 1110–1113.  https://doi.org/10.1016/j.matchemphys.2008.07.043.CrossRefGoogle Scholar
  10. 10.
    Oluwafemi, O. S., Mochochoko, T., Leo, A. J., Mohan, S., Jumbam, D. N., & Songca, S. P. (2016). Microwave irradiation synthesis of silver nanoparticles using cellulose from Eichhornia crassipes plant shoot. Materials Letters, 185, 576–579.  https://doi.org/10.1016/j.matlet.2016.08.116.CrossRefGoogle Scholar
  11. 11.
    Borase, H. P., Salunke, B. K., Salunkhe, R. B., Patil, C. D., Hallsworth, J. E., Kim, B. S., & Patil, S. V. (2014). Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Applied Biochemistry and Biotechnology, 173(1), 1–29.  https://doi.org/10.1007/s12010-014-0831-4.CrossRefGoogle Scholar
  12. 12.
    Tang, B., Wang, J., Xu, S., Afrin, T., Xu, W., Sun, L., & Wang, X. (2011). Application of anisotropic silver nanoparticles: Multifunctionalization of wool fabric. Journal of Colloid and Interface Science, 356(2), 513–518.  https://doi.org/10.1016/j.jcis.2011.01.054.CrossRefGoogle Scholar
  13. 13.
    Li, X., Xu, H., Chen, Z.-S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, 270974.  https://doi.org/10.1155/2011/270974.Google Scholar
  14. 14.
    Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. V. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 90, 78–84.  https://doi.org/10.1016/j.saa.2012.01.006.CrossRefGoogle Scholar
  15. 15.
    Singh, R., Wagh, P., Wadhwani, S., Gaidhani, S., Kumbhar, A., Bellare, J., & Chopade, B. A. (2013). Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine, 8, 4277–4290.  https://doi.org/10.2147/ijn.s48913.Google Scholar
  16. 16.
    Emmanuel, A., & Anthony, A. (2017). Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Advances in Natural Sciences. Nanoscience and Nanotechnology, 8(1), 015017.Google Scholar
  17. 17.
    Amini, N., Amin, G., & Jafari Azar, Z. (2017). Green synthesis of silver nanoparticles using Avena sativa L. extract. Nanomedicine Research Journal, 2(1), 57–63.  https://doi.org/10.22034/nmrj.2017.23588.Google Scholar
  18. 18.
    Law, N., Ansari, S., Livens, F. R., Renshaw, J. C., & Lloyd, J. R. (2008). Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Applied and Environmental Microbiology, 74(22), 7090–7093.  https://doi.org/10.1128/AEM.01069-08.CrossRefGoogle Scholar
  19. 19.
    Joshi, N., Ngwenya, B. T., & French, C. E. (2012). Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. Journal of Hazardous Materials, 241–242, 363–370.  https://doi.org/10.1016/j.jhazmat.2012.09.057.CrossRefGoogle Scholar
  20. 20.
    Wigginton, N. S., de Titta, A., Piccapietra, F., Dobias, J., Nesatyy, V. J., Suter, M. J., & Bernier-Latmani, R. (2010). Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environmental Science & Technology, 44(6), 2163–2168.  https://doi.org/10.1021/es903187s.CrossRefGoogle Scholar
  21. 21.
    Wang, H., Law, N., Pearson, G., van Dongen, B. E., Jarvis, R. M., Goodacre, R., & Lloyd, J. R. (2010). Impact of silver(I) on the metabolism of Shewanella oneidensis. Journal of Bacteriology, 192(4), 1143–1150.  https://doi.org/10.1128/JB.01277-09.CrossRefGoogle Scholar
  22. 22.
    Manti, A., Boi, P., Falcioni, T., Canonico, B., Ventura, A., Sisti, D., Pianetti, A., Balsamo, M., & Papa, S. (2008). Bacterial cell monitoring in wastewater treatment plants by flow cytometry. Water Environment Research, 80(4), 346–354.CrossRefGoogle Scholar
  23. 23.
    Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.-G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13611–13614.CrossRefGoogle Scholar
  24. 24.
    Haefeli, C., Franklin, C., & Hardy, K. (1984). Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. Journal of Bacteriology, 158(1), 389–392.Google Scholar
  25. 25.
    Saravana Kumar, P., Balachandran, C., Duraipandiyan, V., Ramasamy, D., Ignacimuthu, S., & Al-Dhabi, N. A. (2015). Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Applied Nanoscience, 5(2), 169–180.  https://doi.org/10.1007/s13204-014-0304-7.CrossRefGoogle Scholar
  26. 26.
    Mohanta, Y. K., & Behera, S. K. (2014). Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess and Biosystems Engineering, 37(11), 2263–2269.  https://doi.org/10.1007/s00449-014-1205-6.CrossRefGoogle Scholar
  27. 27.
    Wypij, M., Golinska, P., Dahm, H., & Rai, M. (2017). Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria. IET Nanobiotechnology, 11(3), 336–342.  https://doi.org/10.1049/iet-nbt.2016.0112.CrossRefGoogle Scholar
  28. 28.
    Tsibakhashvili, N. Y., Kirkesali, E. I., Pataraya, D. T., Gurielidze, M. A., Kalabegishvili, T. L., Gvarjaladze, D. N., Tsertsvadze, G. I., Frontasyeva, M. V., Zinicovscaia, I. I., Wakstein, M. S., Khakhanov, S. N., Shvindina, N. V., & Shklover, V. Y. (2011). Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Advanced Science Letters, 4(11-12), 3408–3417.CrossRefGoogle Scholar
  29. 29.
    Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., MubarakAli, D., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf B Biointerfaces, 102, 232–237.  https://doi.org/10.1016/j.colsurfb.2012.08.018.CrossRefGoogle Scholar
  30. 30.
    Sadhasivam, S., Shanmugam, P., & Yun, K. (2010). Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces, 81(1), 358–362.  https://doi.org/10.1016/j.colsurfb.2010.07.036.CrossRefGoogle Scholar
  31. 31.
    Golinska, P., Wypij, M., Rathod, D., Tikar, S., Dahm, H., & Rai, M. (2016). Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. Journal of Basic Microbiology, 56(5), 541–556.  https://doi.org/10.1002/jobm.201500516.CrossRefGoogle Scholar
  32. 32.
    Manikprabhu, D., Cheng, J., Chen, W., Sunkara, A. K., Mane, S. B., Kumar, R., Das, M., Hozzein, W., Duan, Y. Q., & Li, W. J. (2016). Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus. Journal of Photochemistry and Photobiology. B, 158, 202–205.  https://doi.org/10.1016/j.jphotobiol.2016.01.018.CrossRefGoogle Scholar
  33. 33.
    Kulkarni, R. R., Shaiwale, N. S., Deobagkar, D. N., & Deobagkar, D. D. (2015). Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. International Journal of Nanomedicine, 10, 963–974.  https://doi.org/10.2147/IJN.S72888.Google Scholar
  34. 34.
    Singh, P., Singh, H., Kim, Y. J., Mathiyalagan, R., Wang, C., & Yang, D. C. (2016). Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme and Microbial Technology, 86, 75–83.  https://doi.org/10.1016/j.enzmictec.2016.02.005.CrossRefGoogle Scholar
  35. 35.
    Buszewski, B., Railean-Plugaru, V., Pomastowski, P., Rafinska, K., Szultka-Mlynska, M., Golinska, P., Wypij, M., Laskowski, D., & Dahm, H. (2016). Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. Journal of Microbiology, Immunology, and Infection.  https://doi.org/10.1016/j.jmii.2016.03.002.
  36. 36.
    Railean-Plugaru, V., Pomastowski, P., Wypij, M., Szultka-Mlynska, M., Rafinska, K., Golinska, P., Dahm, H., & Buszewski, B. (2016). Study of silver nanoparticles synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil. Journal of Applied Microbiology, 120(5), 1250–1263.  https://doi.org/10.1111/jam.13093.CrossRefGoogle Scholar
  37. 37.
    Singh, P., Kim, Y. J., Singh, H., Mathiyalagan, R., Wang, C., & Yang, D. C. (2015). Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. Journal of Nanomaterials, 2015, 10.  https://doi.org/10.1155/2015/234741.Google Scholar
  38. 38.
    Singh, P., Kim, Y. J., Wang, C., Mathiyalagan, R., & Yang, D. C. (2015). Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artificial Cells, Nanomedicine, and Biotechnology, 44(6), 1569–1575.  https://doi.org/10.3109/21691401.2015.1064937.CrossRefGoogle Scholar
  39. 39.
    Rathod, D., Golinska, P., Wypij, M., Dahm, H., & Rai, M. (2016). A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Medical Microbiology and Immunology, 205(5), 435–447.  https://doi.org/10.1007/s00430-016-0462-1.CrossRefGoogle Scholar
  40. 40.
    Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine, 5(4), 452–456.  https://doi.org/10.1016/j.nano.2009.01.012.CrossRefGoogle Scholar
  41. 41.
    Wang, C., Singh, P., Kim, Y. J., Mathiyalagan, R., Myagmarjav, D., Wang, D., Jin, C. G., & Yang, D. C. (2015). Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens. Artificial Cells, Nanomedicine, and Biotechnology, 44, 1714–1721.  https://doi.org/10.3109/21691401.2015.1089253.CrossRefGoogle Scholar
  42. 42.
    Otari, S. V., Patil, R. M., Ghosh, S. J., Thorat, N. D., & Pawar, S. H. (2014). Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 136(Pt B), 1175–1180.  https://doi.org/10.1016/j.saa.2014.10.003.Google Scholar
  43. 43.
    Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W., & Boon, N. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology, 84(4), 741–749.  https://doi.org/10.1007/s00253-009-2032-6.CrossRefGoogle Scholar
  44. 44.
    Brayner, R., Barberousse, H., Hemadi, M., Djedjat, C., Yepremian, C., Coradin, T., Livage, J., Fievet, F., & Coute, A. (2007). Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. Journal of Nanoscience and Nanotechnology, 7(8), 2696–2708.CrossRefGoogle Scholar
  45. 45.
    Dhoondia, Z. H., Chakraborty, H. (2012). Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomaterials and Nanotechnology, 2, 1–7.Google Scholar
  46. 46.
    Viorica, R. P., Pawel, P., Kinga, M., Michal, Z., Katarzyna, R., & Boguslaw, B. (2017). Lactococcus lactis as a safe and inexpensive source of bioactive silver composites. Applied Microbiology and Biotechnology.  https://doi.org/10.1007/s00253-017-8443-x.
  47. 47.
    Saravanan, C., Rajesh, R., Kaviarasan, T., Muthukumar, K., Kavitake, D., & Shetty, P. H. (2017). Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports (Amsterdam, Netherlands), 15, 33–40.  https://doi.org/10.1016/j.btre.2017.02.006.Google Scholar
  48. 48.
    Mohammed Fayaz, A., Girilal, M., Rahman, M., Venkatesan, R., & Kalaichelvan, P. T. (2011). Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochemistry, 46(10), 1958–1962.  https://doi.org/10.1016/j.procbio.2011.07.003.CrossRefGoogle Scholar
  49. 49.
    Tamboli, D. P., & Lee, D. S. (2013). Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. Journal of Hazardous Materials, 260, 878–884.  https://doi.org/10.1016/j.jhazmat.2013.06.003.CrossRefGoogle Scholar
  50. 50.
    Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N., & Zheng, S. (2005). Biosorption and bioreduction of diamine silver complex by Corynebacterium. Journal of Chemical Technology & Biotechnology, 80(3), 285–290.  https://doi.org/10.1002/jctb.1191.CrossRefGoogle Scholar
  51. 51.
    Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S., Kottaisamy, M., BarathmaniKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces, 77(2), 257–262.  https://doi.org/10.1016/j.colsurfb.2010.02.007.CrossRefGoogle Scholar
  52. 52.
    Pugazhenthiran, N., Anandan, S., Kathiravan, G., Udaya Prakash, N. K., Crawford, S., & Ashokkumar, M. (2009). Microbial synthesis of silver nanoparticles by Bacillus sp. Journal of Nanoparticle Research, 11(7), 1811.  https://doi.org/10.1007/s11051-009-9621-2.CrossRefGoogle Scholar
  53. 53.
    Banu, A. N., Balasubramanian, C., & Moorthi, P. V. (2014). Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113(1), 311–316.  https://doi.org/10.1007/s00436-013-3656-0.CrossRefGoogle Scholar
  54. 54.
    Kannan, N., Mukunthan, K. S., & Balaji, S. (2011). A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloids Surf B Biointerfaces, 86(2), 378–383.  https://doi.org/10.1016/j.colsurfb.2011.04.024.CrossRefGoogle Scholar
  55. 55.
    Sathiyanarayanan, G., Seghal Kiran, G., & Selvin, J. (2013). Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids and Surfaces B: Biointerfaces, 102, 13–20.  https://doi.org/10.1016/j.colsurfb.2012.07.032.CrossRefGoogle Scholar
  56. 56.
    Saifuddin, N., Wong, C. W., & Yasumira, A. A. N. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-Journal of Chemistry, 6(1), 61–70.  https://doi.org/10.1155/2009/734264.CrossRefGoogle Scholar
  57. 57.
    Rane, A. N., Baikar, V. V., Ravi Kumar, V., & Deopurkar, R. L. (2017). Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Frontiers in Microbiology, 8, 492.  https://doi.org/10.3389/fmicb.2017.00492.CrossRefGoogle Scholar
  58. 58.
    Zaki, S., El Kady, M. F., & Abd-El-Haleem, D. (2011). Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Materials Research Bulletin, 46(10), 1571–1576.  https://doi.org/10.1016/j.materresbull.2011.06.025.CrossRefGoogle Scholar
  59. 59.
    Anuradha, P., Seema, S., Naheed, A., Ashok, G., & Preety, S. (2011). Synthesis of AgNPs by Bacillus Cereus bacteria and their antimicrobial potential. Journal of Biomaterials and Nanobiotechnology, 2(2), 155–161.  https://doi.org/10.4236/jbnb.2011.22020.CrossRefGoogle Scholar
  60. 60.
    Pourali, P., & Yahyaei, B. (2016). Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. Journal of Trace Elements in Medicine and Biology, 34, 22–31.  https://doi.org/10.1016/j.jtemb.2015.11.004.CrossRefGoogle Scholar
  61. 61.
    Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1127–1132.  https://doi.org/10.3109/21691401.2015.1011805.Google Scholar
  62. 62.
    Elbeshehy, E. K., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Frontiers in Microbiology, 6, 453.  https://doi.org/10.3389/fmicb.2015.00453.CrossRefGoogle Scholar
  63. 63.
    Shanthi, S., Jayaseelan, B. D., Velusamy, P., Vijayakumar, S., Chih, C. T., & Vaseeharan, B. (2016). Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microbial Pathogenesis, 93, 70–77.  https://doi.org/10.1016/j.micpath.2016.01.014.CrossRefGoogle Scholar
  64. 64.
    El-Batal, A. I., Hashem, A. A., & Abdelbaky, N. M. (2013). Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity. Springerplus, 2(1), 129.  https://doi.org/10.1186/2193-1801-2-129.CrossRefGoogle Scholar
  65. 65.
    Verma, S. K., Jha, E., Kumar Panda, P., Mishra, A., Thirumurugan, A., Das, B., Parashar, S. K. S., & Suar, M. (2017). Rapid novel facile biosynthesized Silver nanoparticles from Bacterial release induce biogenicity and concentration dependent in vivo cytotoxicity with embryonic Zebrafish—a mechanistic insight. Toxicological Science.  https://doi.org/10.1093/toxsci/kfx204.
  66. 66.
    Rezvani Amin, Z., Khashyarmanesh, Z., & Fazly Bazzaz, B. S. (2016). Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles. World Journal of Microbiology and Biotechnology, 32(9), 140.  https://doi.org/10.1007/s11274-016-2110-8.CrossRefGoogle Scholar
  67. 67.
    El-Shanshoury, A. E.-R. R., ElSilk, S. E., & Ebeid, M. E. (2011). Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnology, 2011, 385480.  https://doi.org/10.5402/2011/385480.CrossRefGoogle Scholar
  68. 68.
    Deepa, S., Kanimozhi, K., & Panneerselvam, A. (2013). Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. International Journal of Current Microbiology and Applied Sciences, 2, 223–230.Google Scholar
  69. 69.
    Juibari, M. M., Abbasalizadeh, S., Jouzani, G. S., & Noruzi, M. (2011). Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Materials Letters, 65(6), 1014–1017.  https://doi.org/10.1016/j.matlet.2010.12.056.CrossRefGoogle Scholar
  70. 70.
    Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Research International, 2013, 287638.  https://doi.org/10.1155/2013/287638.Google Scholar
  71. 71.
    Yumei, L., Yamei, L., Qiang, L., & Jie, B. (2017). Rapid biosynthesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from Arthrobacter sp. B4: its antimicrobial activity and phytotoxicity. Journal of Nanomaterials, 2017, 9703614.  https://doi.org/10.1155/2017/9703614.CrossRefGoogle Scholar
  72. 72.
    Jo, J. H., Singh, P., Kim, Y. J., Wang, C., Mathiyalagan, R., Jin, C. G., & Yang, D. C. (2015). Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnologyy, 44(6), 1576–1581.  https://doi.org/10.3109/21691401.2015.1068792 [pii].CrossRefGoogle Scholar
  73. 73.
    Srivastava, S. K., & Constanti, M. (2012). Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. Journal of Nanoparticle Research, 14(4), 1–10.  https://doi.org/10.1007/s11051-012-0831-7.CrossRefGoogle Scholar
  74. 74.
    Kumar, C. G., & Mamidyala, S. K. (2011). Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 84(2), 462–466.  https://doi.org/10.1016/j.colsurfb.2011.01.042.CrossRefGoogle Scholar
  75. 75.
    Peiris, M. K., Gunasekara, C. P., Jayaweera, P. M., Arachchi, N. D. H., & Fernando, N. (2017). Biosynthesized silver nanoparticles: are they effective antimicrobials? Memórias do Instituto Oswaldo Cruz, 112(8), 537–543.  https://doi.org/10.1590/0074-02760170023.CrossRefGoogle Scholar
  76. 76.
    Quinteros, M. A., Aiassa Martinez, I. M., Dalmasso, P. R., & Paez, P. L. (2016). Silver nanoparticles: Biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. International Journal of Biomaterials, 2016, 5971047.  https://doi.org/10.1155/2016/5971047.CrossRefGoogle Scholar
  77. 77.
    Naik, M. M., Prabhu, M. S., Samant, S. N., Naik, P. M., & Shirodkar, S. (2017). Synergistic action of silver nanoparticles synthesized from silver resistant estuarine Pseudomonas aeruginosa strain SN5 with antibiotics against antibiotic resistant bacterial human pathogens. Thalassas: an International Journal of Marine Sciences, 33(1), 73–80.  https://doi.org/10.1007/s41208-017-0023-4.CrossRefGoogle Scholar
  78. 78.
    Kumari, R., Barsainya, M., & Singh, D. P. (2017). Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environmental Science and Pollution Research International, 24(5), 4645–4654.  https://doi.org/10.1007/s11356-016-8170-3.CrossRefGoogle Scholar
  79. 79.
    Punjabi, K., Yedurkar, S., Doshi, S., Deshapnde, S., & Vaidya, S. (2017). Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry. IET Nanobiotechnology, 11(5), 584–590.  https://doi.org/10.1049/iet-nbt.2016.0172.CrossRefGoogle Scholar
  80. 80.
    Ali, J., Hameed, A., Ahmed, S., Ali, M. I., Zainab, S., & Ali, N. (2016). Role of catalytic protein and stabilising agents in the transformation of Ag ions to nanoparticles by Pseudomonas aeruginosa. IET Nanobiotechnology, 10(5), 295–300.  https://doi.org/10.1049/iet-nbt.2015.0093.CrossRefGoogle Scholar
  81. 81.
    Syed, B., Nagendra Prasad, M. N., Dhananjaya, B. L., Mohan Kumar, K., Yallappa, S., & Satish, S. (2016). Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzyme and Microbial Technology, 95, 128–136.  https://doi.org/10.1016/j.enzmictec.2016.10.004.CrossRefGoogle Scholar
  82. 82.
    Kushwaha, A., Singh, V. K., Bhartariya, J., Singh, P., & Yasmeen, K. (2015). Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. European Journal of Experimental Biology, 5(1), 65–70.Google Scholar
  83. 83.
    Chumpol, J., Siri, S. (2017). Simple green production of silver nanoparticles facilitated by bacterial genomic DNA and their antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 1–7.  https://doi.org/10.1080/21691401.2017.1332638.
  84. 84.
    Du, J., Singh, H., & Yi, T. H. (2016). Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Artificial Cells, Nanomedicine, and Biotechnology, 45(2), 211–217.  https://doi.org/10.1080/21691401.2016.1178135.CrossRefGoogle Scholar
  85. 85.
    Gahlawat, G., Shikha, S., Chaddha, B. S., Chaudhuri, S. R., Mayilraj, S., & Choudhury, A. R. (2016). Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microbial Cell Factories, 15, 25.  https://doi.org/10.1186/s12934-016-0422-x.CrossRefGoogle Scholar
  86. 86.
    Thomas, R., Janardhanan, A., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Brazilian Journal of Microbiology, 45(4), 1221–1227.CrossRefGoogle Scholar
  87. 87.
    Rasulov, B., Rustamova, N., Yili, A., Zhao, H. Q., & Aisa, H. A. (2016). Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens. Folia Microbiologia (Praha), 61(4), 283–293.  https://doi.org/10.1007/s12223-015-0436-5.CrossRefGoogle Scholar
  88. 88.
    Samadi, N., Golkaran, D., Eslamifar, A., Jamalifar, H., Fazeli, M. R., & Mohseni, F. A. (2009). Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. Journal of Biomedical Nanotechnology, 5(3), 247–253.CrossRefGoogle Scholar
  89. 89.
    Parikh, R. Y., Ramanathan, R., Coloe, P. J., Bhargava, S. K., Patole, M. S., Shouche, Y. S., & Bansal, V. (2011). Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One, 6(6), e21401.  https://doi.org/10.1371/journal.pone.0021401.CrossRefGoogle Scholar
  90. 90.
    Kalpana, D., & Lee, Y. S. (2013). Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme and Microbial Technology, 52(3), 151–156.  https://doi.org/10.1016/j.enzmictec.2012.12.006.CrossRefGoogle Scholar
  91. 91.
    Baldi, F., Daniele, S., Gallo, M., Paganelli, S., Battistel, D., Piccolo, O., Faleri, C., Puglia, A. M., & Gallo, G. (2016). Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells. Biometals, 29(2), 321–331.  https://doi.org/10.1007/s10534-016-9918-4.CrossRefGoogle Scholar
  92. 92.
    Seshadri, S., Prakash, A., & Kowshik, M. (2012). Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bulletin of Materials Science, 35(7), 1201–1205.  https://doi.org/10.1007/s12034-012-0417-0.CrossRefGoogle Scholar
  93. 93.
    Krishnaraj, R. N., & Berchmans, S. (2013). In vitro antiplatelet activity of silver nanoparticles synthesized using the microorganism Gluconobacter roseus: an AFM-based study. RSC Advances, 3(23), 8953–8959.  https://doi.org/10.1039/c3ra41246f.CrossRefGoogle Scholar
  94. 94.
    Karthik, C., & Radha, K. V. (2012). Biosynthesis and characterization of silver nanoparticles using Enterobacter aerogenes: a kinetic approach. Digest Journal of Nanomaterials and Biostructures, 7, 1007–1014.Google Scholar
  95. 95.
    Singh, H., Du, J., & Yi, T. H. (2017). Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes. Artificial Cells, Nanomedicine, and Biotechnology, 45(3), 584–590.  https://doi.org/10.3109/21691401.2016.1163715.CrossRefGoogle Scholar
  96. 96.
    Narayanan, K. B., & Sakthivel, N. (2013). Biosynthesis of silver nanoparticles by phytopathogen Xanthomonas oryzae pv. oryzae strain BXO8. Enzyme and Microbial Technology, 23(9), 1287–1292.  https://doi.org/10.4014/jmb.1304.04047.Google Scholar
  97. 97.
    Rajeshkumar, S., & Malarkodi, C. (2014). In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorganic Chemistry and Applications, 2014, 10.  https://doi.org/10.1155/2014/581890.CrossRefGoogle Scholar
  98. 98.
    Oves, M., Khan, M. S., Zaidi, A., Ahmed, A. S., Ahmed, F., Ahmad, E., Sherwani, A., Owais, M., & Azam, A. (2013). Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One, 8(3), e59140.  https://doi.org/10.1371/journal.pone.0059140.CrossRefGoogle Scholar
  99. 99.
    Debabov, V. G., Voeikova, T. A., Shebanova, A. S., Shaitan, K. V., Emel'yanova, L. K., Novikova, L. M., & Kirpichnikov, M. P. (2013). Bacterial synthesis of silver sulfide nanoparticles. Nanotechnologies in Russia, 8(3), 269–276.  https://doi.org/10.1134/s1995078013020043.CrossRefGoogle Scholar
  100. 100.
    Ramasamy, M., Lee, J. H., & Lee, J. (2016). Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. Journal of Biomaterials Applications, 31(3), 366–378.  https://doi.org/10.1177/0885328216646910.CrossRefGoogle Scholar
  101. 101.
    Ahmed, K. B., Kalla, D., Uppuluri, K. B., & Anbazhagan, V. (2014). Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent. Carbohydrate Polymers, 112, 539–545.  https://doi.org/10.1016/j.carbpol.2014.06.033.CrossRefGoogle Scholar
  102. 102.
    Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3(2), 168–171.  https://doi.org/10.1016/j.nano.2007.02.001.CrossRefGoogle Scholar
  103. 103.
    Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Vanaja, M., Jobitha, G. D. G., & Annadurai, G. (2013). Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invention Today, 5(2), 119–125.  https://doi.org/10.1016/j.dit.2013.05.005.CrossRefGoogle Scholar
  104. 104.
    Chun-Jing, C., & Hong-Juan, B. A. I. (2010). Biosynthesis of silver nanoparticles using the phototrophic bacteria Rhodopseudomonas palustris and its antimicrobial activity against Escherichia coli and Staphylococcus aureus. Microbiology Bulletin, 37(12), 1798–1804.Google Scholar
  105. 105.
    Bai, H.-J., Yang, B.-S., Chai, C.-J., Yang, G.-E., Jia, W.-L., & Yi, Z.-B. (2011). Green synthesis of silver nanoparticles using Rhodobacter sphaeroides. World Journal of Microbiology and Biotechnology, 27(11), 2723–2728.  https://doi.org/10.1007/s11274-011-0747-x.CrossRefGoogle Scholar
  106. 106.
    Thomas, R., Jasim, B., Mathew, J., & Radhakrishnan, E. K. (2012). Extracellular synthesis of silver nanoparticles by endophytic Bordetella sp. isolated from Piper nigrum and its antibacterial activity analysis. Nano Biomedicine and Engineering, 4(4), 183–187.CrossRefGoogle Scholar
  107. 107.
    Ghorbani, H. (2013). Biosynthesis of silver nanoparticles using Salmonella typhirium. Journal of Nanostructure in Chemistry, 3, 1–4.CrossRefGoogle Scholar
  108. 108.
    Venil, C. K., Sathishkumar, P., Malathi, M., Usha, R., Jayakumar, R., Yusoff, A. R. M., & Ahmad, W. A. (2016). Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Materials Science & Engineering. C, Materials for Biological Applications, 59, 228–234.  https://doi.org/10.1016/j.msec.2015.10.019.CrossRefGoogle Scholar
  109. 109.
    Syed, B., Yashavantha Rao, H. C., Nagendra-Prasad, M. N., Prasad, A., Harini, B. P., Azmath, P., Rakshith, D., & Satish, S. (2016). Biomimetic synthesis of silver nanoparticles using endosymbiotic bacterium inhabiting Euphorbia hirta L. and their bactericidal potential. Scientifica (Cairo), 2016, 9020239.  https://doi.org/10.1155/2016/9020239.Google Scholar
  110. 110.
    Singh, G., Babele, P. K., Shahi, S. K., Sinha, R. P., Tyagi, M. B., & Kumar, A. (2014). Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. Journal of Microbial Biotechnology, 24(10), 1354–1367.CrossRefGoogle Scholar
  111. 111.
    Sudha, S. S., Rajamanickam, K., & Rengaramanujam, J. (2013). Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian Journal of Experimental Biology, 51(5), 393–399.Google Scholar
  112. 112.
    Ali, D. M., Sasikala, M., Gunasekaran, M., & Thajuddin, N. (2011). Biosynthesis and characterization of silver nanoparticles using marine Cyanobacterium, oscillatoria willei ntdm01. Digest Journal of Nanomaterials and Biostructures, 6(2), 385–390.  https://doi.org/10.1155/2012/160145.Google Scholar
  113. 113.
    Lengke, M. F., Fleet, M. E., & Southam, G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 23(5), 2694–2699.  https://doi.org/10.1021/la0613124.CrossRefGoogle Scholar
  114. 114.
    Srivastava, P., Braganca, J., Ramanan, S. R., & Kowshik, M. (2013). Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles, 17(5), 821–831.  https://doi.org/10.1007/s00792-013-0563-3.CrossRefGoogle Scholar
  115. 115.
    Govindaraju, K., Basha, S. K., Kumar, V. G., & Singaravelu, G. (2008). Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, 43(15), 5115–5122.  https://doi.org/10.1007/s10853-008-2745-4.CrossRefGoogle Scholar
  116. 116.
    Mahdieh, M., Zolanvari, A., & Azimee, A. S. (2012). Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica, 19(3), 926–929.  https://doi.org/10.1016/j.scient.2012.01.010.CrossRefGoogle Scholar
  117. 117.
    Husain, S., Sardar, M., & Fatma, T. (2015). Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World Journal of Microbiology and Biotechnology, 31(8), 1279–1283.  https://doi.org/10.1007/s11274-015-1869-3.CrossRefGoogle Scholar
  118. 118.
    Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports, 5, 112–119.  https://doi.org/10.1016/j.btre.2014.12.001.CrossRefGoogle Scholar
  119. 119.
    Keskin, N. O. S., Kılıç, N. K., Turgay, T., & Gönül, D. (2016). Green synthesis of silver nanoparticles using Cyanobacteria and evaluation of their photocatalytic and antimicrobial activity. Journal of Nano Research, 40, 120–127.CrossRefGoogle Scholar
  120. 120.
    Al-Katib, M., Al-Shahri, Y., & Al-Niemi, A. (2015). Biosynthesis of silver nanoparticles by Cyanobacterium gloeocapsa sp. International Journal of Enhanced Research in Science, Technology & Engineering, 4(9), 60–73.CrossRefGoogle Scholar
  121. 121.
    Roychoudhury, P., Gopal, P. K., Paul, S., & Pal, R. (2016). Cyanobacteria assisted biosynthesis of silver nanoparticles—a potential antileukemic agent. Journal of Applied Phycology, 28(6), 3387–3394.  https://doi.org/10.1007/s10811-016-0852-1.CrossRefGoogle Scholar
  122. 122.
    Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346.  https://doi.org/10.1021/cr030698+.CrossRefGoogle Scholar
  123. 123.
    Bogunia-Kubik, K., & Sugisaka, M. (2002). From molecular biology to nanotechnology and nanomedicine. Biosystems, 65(2-3), 123–138.  https://doi.org/10.1016/S0303-2647(02)00010-2.CrossRefGoogle Scholar
  124. 124.
    Zharov, V. P., Kim, J. W., Curiel, D. T., & Everts, M. (2005). Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine, 1(4), 326–345.  https://doi.org/10.1016/j.nano.2005.10.006.CrossRefGoogle Scholar
  125. 125.
    Mulvaney, P. (1996). Surface plasmon spectroscopy of nano- sized metal particles. Langmuir, 12, 788–800.CrossRefGoogle Scholar
  126. 126.
    Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650.  https://doi.org/10.1039/c1gc15386b.CrossRefGoogle Scholar
  127. 127.
    Fu, M., Li, Q., Sun, D., Lu, Y., He, N., Deng, X., Wang, H., & Huang, J. (2006). Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese Journal of Chemical Engineering, 14(1), 114–117.CrossRefGoogle Scholar
  128. 128.
    Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology, 42(11), 4133–4139.CrossRefGoogle Scholar
  129. 129.
    Zhang, Z., Zhang, X., Xin, Z., Deng, M., Wen, Y., & Song, Y. (2011). Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology, 22(42), 425601.  https://doi.org/10.1088/0957-4484/22/42/425601.CrossRefGoogle Scholar
  130. 130.
    Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10(10), 5221–5238.  https://doi.org/10.3390/ijerph10105221.CrossRefGoogle Scholar
  131. 131.
    Murugan, K., Senthilkumar, B., Senbagam, D., & Al-Sohaibani, S. (2014). Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. International Journal of Nanomedicin, 9, 2431–2438.  https://doi.org/10.2147/IJN.S61779.Google Scholar
  132. 132.
    Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R., Deepak, V., & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces, 79(2), 340–344.  https://doi.org/10.1016/j.colsurfb.2010.04.014.CrossRefGoogle Scholar
  133. 133.
    Fesharaki, P. J., Nazari, P., Shakibaie, M., Rezaie, S., Banoee, M., Abdollahi, M., & Shahverdi, A. R. (2010). Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian Journal of Microbiology, 41(2), 461–466.  https://doi.org/10.1590/S1517-838220100002000028.CrossRefGoogle Scholar
  134. 134.
    Gurunathan, S., Raman, J., Abd Malek, S. N., John, P. A., & Vikineswary, S. (2013). Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. International Journal of Nanomedicine, 8, 4399–4413.  https://doi.org/10.2147/IJN.S51881.Google Scholar
  135. 135.
    Deshpande, L. M., & Chopade, B. A. (1994). Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals, 7(1), 49–56.CrossRefGoogle Scholar
  136. 136.
    Deshpande, L. M., Kapadnis, B. P., & Chopade, B. A. (1993). Metal resistance in Acinetobacter and its relation to beta-lactamase production. Biometals, 6(1), 55–59.CrossRefGoogle Scholar
  137. 137.
    Dimkpa, C. O., Calder, A., Gajjar, P., Merugu, S., Huang, W., Britt, D. W., McLean, J. E., Johnson, W. P., & Anderson, A. J. (2011). Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 188(1-3), 428–435.  https://doi.org/10.1016/j.jhazmat.2011.01.118.CrossRefGoogle Scholar
  138. 138.
    Quang Huy, T., Van Quy, N., & Anh-Tuan, L. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 033001.Google Scholar
  139. 139.
    Li, X. Z., Nikaido, H., & Williams, K. E. (1997). Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. Journal of Bacteriology, 179(19), 6127–6132.CrossRefGoogle Scholar
  140. 140.
    Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R., Muniyandi, J., Hariharan, N., & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces, 74(1), 328–335.  https://doi.org/10.1016/j.colsurfb.2009.07.048.CrossRefGoogle Scholar
  141. 141.
    Slawson, R. M., Van Dyke, M. I., Lee, H., & Trevors, J. T. (1992). Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid, 27(1), 72–79.  https://doi.org/10.1016/0147-619X(92)90008-X.CrossRefGoogle Scholar
  142. 142.
    Annamalai, J., & Nallamuthu, T. (2016). Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Applied Nanoscience, 6, 259–265.  https://doi.org/10.1007/s13204-015-0426-6.CrossRefGoogle Scholar
  143. 143.
    Arokiyaraj, S., Arasu, M. V., Vincent, S., Prakash, N. U., Choi, S. H., Oh, Y. K., Choi, K. C., & Kim, K. H. (2014). Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L. and its antibacterial and cytotoxic effects: an in vitro study. International Journal of Nanomedicine, 9, 379–388.  https://doi.org/10.2147/IJN.S53546.CrossRefGoogle Scholar
  144. 144.
    Gordon, O., Vig Slenters, T. N., Brunetto, P. S., Villaruz, A. E., Sturdevant, D. E., Otto, M., Landmann, R., & Fromm, K. M. (2009). Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrobial Agents and Chemotherapy, 54(10), 4208–4218.  https://doi.org/10.1128/aac.01830-09.CrossRefGoogle Scholar
  145. 145.
    Vigneshwaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P., & Balasubramanya, R. H. (2007). Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir, 23(13), 7113–7117.  https://doi.org/10.1021/la063627p.CrossRefGoogle Scholar
  146. 146.
    Wang, F., Liu, B., Huang, P. J., & Liu, J. (2013). Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Analytical Chemistry, 85(24), 12144–12151.  https://doi.org/10.1021/ac4033627.CrossRefGoogle Scholar
  147. 147.
    Thilakaraj, R., Raghunathan, K., Anishetty, S., & Pennathur, G. (2007). In silico identification of putative metal binding motifs. Bioinformatics, 23(3), 267–271.  https://doi.org/10.1093/bioinformatics/btl617.CrossRefGoogle Scholar
  148. 148.
    Prakash, A., Sharma, S., Ahmad, N., Ghosh, A., & Sinha, P. (2011). Synthesis of AgNPs by Bacillus cereus bacteria and their antimicrobial potential. Journal of Biomaterials and Nanobiotechnology, 2, 155–161.CrossRefGoogle Scholar
  149. 149.
    Li, S. W., Zhang, X., & Sheng, G. P. (2016). Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria. Environmental Science and Pollution Research International, 23(9), 8627–8633.  https://doi.org/10.1007/s11356-016-6105-7.CrossRefGoogle Scholar
  150. 150.
    Zhang, X., Yang, C. W., Yu, H. Q., & Sheng, G. P. (2016). Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). Water Research, 106, 242–248.  https://doi.org/10.1016/j.watres.2016.10.004.CrossRefGoogle Scholar
  151. 151.
    Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces, 65(1), 150–153.  https://doi.org/10.1016/j.colsurfb.2008.02.018.CrossRefGoogle Scholar
  152. 152.
    Graf, P., Mantion, A., Foelske, A., Shkilnyy, A., Masic, A., Thunemann, A. F., & Taubert, A. (2009). Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chemistry, 15(23), 5831–5844.  https://doi.org/10.1002/chem.200802329.CrossRefGoogle Scholar
  153. 153.
    Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E., & Stone, M. O. (2002). Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, 1(3), 169–172.  https://doi.org/10.1038/nmat758.CrossRefGoogle Scholar
  154. 154.
    Nam, H. Y., Hahn, H. J., Nam, K., Choi, W. H., Jeong, Y., Kim, D. E., & Park, J. S. (2008). Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. International Journal of Pharmaceutics, 363(1-2), 199–205.  https://doi.org/10.1016/j.ijpharm.2008.07.021.CrossRefGoogle Scholar
  155. 155.
    Prasad, G. K., Ramacharyulu, P. V., Merwyn, S., Agarwal, G. S., Srivastava, A. R., Singh, B., Rai, G. P., & Vijayaraghavan, R. (2010). Photocatalytic inactivation of spores of Bacillus anthracis using titania nanomaterials. Journal of Hazardous Materials, 185(2-3), 977–982.  https://doi.org/10.1016/j.jhazmat.2010.10.001.CrossRefGoogle Scholar
  156. 156.
    Selvakannan, P. R., Swami, A., Srisathiyanarayanan, D., Shirude, P. S., Pasricha, R., Mandale, A. B., & Sastry, M. (2004). Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir, 20(18), 7825–7836.  https://doi.org/10.1021/la049258j.CrossRefGoogle Scholar
  157. 157.
    Si, S., & Mandal, T. K. (2007). Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chemistry, 13(11), 3160–3168.  https://doi.org/10.1002/chem.200601492.CrossRefGoogle Scholar
  158. 158.
    Anandan, S., & Ashokkumar, M. (2009). Sonochemical synthesis of Au-TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrasonics Sonochemistry, 16(3), 316–320.  https://doi.org/10.1016/j.ultsonch.2008.10.010.CrossRefGoogle Scholar
  159. 159.
    Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: current state and future perspectives. Biotechnology and Bioengineering, 109(10), 2422–2436.  https://doi.org/10.1002/bit.24570.CrossRefGoogle Scholar
  160. 160.
    Syed, A., Saraswati, S., Kundu, G. C., & Ahmad, A. (2013). Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 114, 144–147.  https://doi.org/10.1016/j.saa.2013.05.030.CrossRefGoogle Scholar
  161. 161.
    Kulkarni, S. A., & Feng, S. S. (2013). Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharmaceutical Research, 30(10), 2512–2522.  https://doi.org/10.1007/s11095-012-0958-3.CrossRefGoogle Scholar
  162. 162.
    Sangappa, M., & Thiagarajan, P. (2015). Combating drug resistant pathogenic bacteria isolated from clinical infections, with silver oxide nanoparticles. Indian Journal of Pharmaceutical Sciences, 77(2), 151–155.CrossRefGoogle Scholar
  163. 163.
    Abdeen, S., Geo, S., Sukanya, S., Praseetha, P. K., & Dhanya, R. P. (2014). Biosynthesis of Silver nanoparticles from Actinomycetes for therapeutic applications. International Journal of Nano Dimension, 5(2), 155–162.  https://doi.org/10.7508/ijnd.2014.02.008.Google Scholar
  164. 164.
    Patra, J. K., & Baek, K.-H. (2017). Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in Microbiology, 8, 167.  https://doi.org/10.3389/fmicb.2017.00167.CrossRefGoogle Scholar
  165. 165.
    Morales-Avila, E., Ferro-Flores, G., Ocampo, G., López-Téllez, G., López-Ortega, J., Rogel-Ayala, D. G., & Sánchez-Padilla, D. (2017). Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin (29–41) antimicrobial peptide. Journal of Nanomaterials, 2017, 5831959.  https://doi.org/10.1155/2017/5831959.CrossRefGoogle Scholar
  166. 166.
    Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advance, 4, 3974–3983.CrossRefGoogle Scholar
  167. 167.
    Rawashdeh, R., & Haik, Y. (2009). Antibacterial mechanisms of metallic nanoparticles: A Review. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 3(2), 12–20.Google Scholar
  168. 168.
    Agnihotri, S., & Mukherji, S. (2013). Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5(16), 7328–7340.  https://doi.org/10.1039/c3nr00024a.CrossRefGoogle Scholar
  169. 169.
    Sotiriou, G. A., Meyer, A., Knijnenburg, J. T., Panke, S., & Pratsinis, S. E. (2012). Quantifying the origin of released Ag+ ions from nanosilver. Langmuir, 28(45), 15929–15936.  https://doi.org/10.1021/la303370d.CrossRefGoogle Scholar
  170. 170.
    Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171–2178.  https://doi.org/10.1128/AEM.02001-07.CrossRefGoogle Scholar
  171. 171.
    Maiti, S., Krishnan, D., Barman, G., Ghosh, S. K., & Laha, J. K. (2014). Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. Journal of Analytical Science and Technology, 5(1), 40.  https://doi.org/10.1186/s40543-014-0040-3.CrossRefGoogle Scholar
  172. 172.
    Ahearn, D. G., May, L. L., & Gabriel, M. M. (1995). Adherence of organisms to silver-coated surfaces. Journal of Industrial Microbiology, 15(4), 372–376.  https://doi.org/10.1007/bf01569993.CrossRefGoogle Scholar
  173. 173.
    Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine, 5(4), 382–386.  https://doi.org/10.1016/j.nano.2009.06.005.CrossRefGoogle Scholar
  174. 174.
    Musarrat, J., Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., Azam, A., & Naqvi, A. (2010). Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technology, 101(22), 8772–8776.  https://doi.org/10.1016/j.biortech.2010.06.065.CrossRefGoogle Scholar
  175. 175.
    Mallmann, E. J., Cunha, F. A., Castro, B. N., Maciel, A. M., Menezes, E. A., & Fechine, P. B. (2015). Antifungal activity of silver nanoparticles obtained by green synthesis. Revista do Instituto de Medicina Tropical de São Paulo, 57(2), 165–167.  https://doi.org/10.1590/S0036-46652015000200011.CrossRefGoogle Scholar
  176. 176.
    Bahrami-Teimoori, B., Nikparast, Y., Hojatianfar, M., Akhlaghi, M., Ghorbani, R., & Pourianfar, H. R. (2017). Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. Journal of Experimental Nanoscience, 12(1), 129–139.  https://doi.org/10.1080/17458080.2017.1279355.
  177. 177.
    Sambale, F., Wagner, S., Stahl, F., Khaydarov, R. R., Scheper, T., & Bahnemann, D. (2015). Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. Journal of Nanomaterials, 2015, 136765.  https://doi.org/10.1155/2015/136765.Google Scholar
  178. 178.
    Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., & Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19(7), 975–983.  https://doi.org/10.1016/j.tiv.2005.06.034.CrossRefGoogle Scholar
  179. 179.
    Lee, Y. H., Cheng, F. Y., Chiu, H. W., Tsai, J. C., Fang, C. Y., Chen, C. W., & Wang, Y. J. (2014). Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials, 35(16), 4706–4715.  https://doi.org/10.1016/j.biomaterials.2014.02.021.CrossRefGoogle Scholar
  180. 180.
    Peng, H., Zhang, X., Wei, Y., Liu, W., Li, S., Yu, G., Fu, X., Cao, T., & Deng, X. (2012). Cytotoxicity of silver nanoparticles in human embryonic stem cell-derived fibroblasts and an L-929 cell line. Journal of Nanomaterials, 2012, 9.  https://doi.org/10.1155/2012/160145.CrossRefGoogle Scholar
  181. 181.
    Sahu, P. K., Iyer, P. S., Barage, S. H., Sonawane, K. D., & Chopade, B. A. (2014). Characterization of the algC gene expression pattern in the multidrug resistant Acinetobacter baumannii AIIMS 7 and correlation with biofilm development on abiotic surface. Scientific World Journal, 2014, 593546.  https://doi.org/10.1155/2014/593546.CrossRefGoogle Scholar
  182. 182.
    Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews. Drug Discovery, 2(2), 114–122.  https://doi.org/10.1038/nrd1008.CrossRefGoogle Scholar
  183. 183.
    Kostenko, V., Lyczak, J., Turner, K., & Martinuzzi, R. J. (2010). Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrobial Agents and Chemotherapy, 54(12), 5120–5131.  https://doi.org/10.1128/AAC.00825-10.CrossRefGoogle Scholar
  184. 184.
    Brackman, G., De Meyer, L., Nelis, H. J., & Coenye, T. C. (2013). Biofilm inhibitory and eradicating activity of wound care products against Staphylococcus aureus and Staphylococcus epidermidis biofilms in an in vitro chronic wound model. Journal of Applied Microbiology, 114(6), 1833–1842.  https://doi.org/10.1111/jam.12191.CrossRefGoogle Scholar
  185. 185.
    Yaolin, F., Patrick, Y.-L., Temitope Azeezat, A., & Kimberly, L. J. (2017). Impact of sulfidation of silver nanoparticles on established P. aeruginosa biofilm. Journal of Biomaterials and Nanobiotechnology, 8, 14.  https://doi.org/10.4236/jbnb.2017.81006.Google Scholar
  186. 186.
    Gaidhani, S. V., Raskar, A. V., Poddar, S., Gosavi, S., Sahu, P. K., Pardesi, K. R., Bhide, S. V., & Chopade, B. A. (2014). Time dependent enhanced resistance against antibiotics and metal salts by planktonic and biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate. The Indian Journal of Medical Research, 140(5), 665–671.Google Scholar
  187. 187.
    Flores, C. Y., Minan, A. G., Grillo, C. A., Salvarezza, R. C., Vericat, C., & Schilardi, P. L. (2013). Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Applied Materials & Interfaces, 5(8), 3149–3159.  https://doi.org/10.1021/am400044e.CrossRefGoogle Scholar
  188. 188.
    Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., & Alzohairy, M. A. (2015). Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian Journal of Medical Microbiology, 33(1), 101–109.  https://doi.org/10.4103/0255-0857.148402.CrossRefGoogle Scholar
  189. 189.
    Mu, H., Tang, J., Liu, Q., Sun, C., Wang, T., & Duan, J. (2016). Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Scientific Reports, 6, 18877.  https://doi.org/10.1038/srep18877.CrossRefGoogle Scholar
  190. 190.
    Rodriguez Couto, S. (2009). Dye removal by immobilised fungi. Biotechnology Advances, 27(3), 227–235.  https://doi.org/10.1016/j.biotechadv.2008.12.001.CrossRefGoogle Scholar
  191. 191.
    Ahmad, A., Razali, M. H., Mamat, M., Mehamod, F. S. B., & Anuarmatamin, K. (2017). Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites. Chemosphere, 168(Supplement C), 474–482.  https://doi.org/10.1016/j.chemosphere.2016.11.028.CrossRefGoogle Scholar
  192. 192.
    Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I., & Prasad, R. (2015). Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir, 31(42), 11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081.CrossRefGoogle Scholar
  193. 193.
    Shi, C., Zhu, N., Cao, Y., & Wu, P. (2015). Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Research Letters, 10, 147, 1–8.  https://doi.org/10.1186/s11671-015-0856-9.
  194. 194.
    Roy, K., Sarkar, C. K., & Ghosh, C. K. (2014). Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Applied Nanoscience, 5(8), 953–959.  https://doi.org/10.1007/s13204-014-0392-4.CrossRefGoogle Scholar
  195. 195.
    Chen, A., Contreras, L. M. (2017). Imposed environmental stresses facilitate cell-free nanoparticle formation by Deinococcus radiodurans. Applied and Environmental Microbiology, 83(18), e00798–17.  https://doi.org/10.1128/aem.00798-17
  196. 196.
    Saha, J., Begum, A., Mukherjee, A., & Kumar, S. (2017). A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustainable Environment Research, 27(5), 245–250.  https://doi.org/10.1016/j.serj.2017.04.003.CrossRefGoogle Scholar
  197. 197.
    Otari, S. V., Patil, R. M., Nadaf, N. H., Ghosh, S. J., & Pawar, S. H. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environmental Science and Pollution Research International, 21(2), 1503–1513.  https://doi.org/10.1007/s11356-013-1764-0.CrossRefGoogle Scholar
  198. 198.
    Khan, M. E., Khan, M. M., & Cho, M. H. (2015). Biogenic synthesis of a Ag-graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New Journal of Chemistry, 39(10), 8121–8129.  https://doi.org/10.1039/c5nj01320h.CrossRefGoogle Scholar
  199. 199.
    Orlowski, P., Tomaszewska, E., Gniadek, M., Baska, P., Nowakowska, J., Sokolowska, J., Nowak, Z., Donten, M., Celichowski, G., Grobelny, J., & Krzyzowska, M. (2014). Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One, 9(8), e104113.  https://doi.org/10.1371/journal.pone.0104113.CrossRefGoogle Scholar
  200. 200.
    Sun, R. W., Chen, R., Chung, N. P., Ho, C. M., Lin, C. L., Che, C. M. (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications (Cambridge, England), (40), 5059–5061.  https://doi.org/10.1039/b510984a.
  201. 201.
    Lawn, S. D., Butera, S. T., & Folks, T. M. (2001). Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clinical Microbiology Reviews, 14(4), 753–777.  https://doi.org/10.1128/CMR.14.4.753-777.2001.CrossRefGoogle Scholar
  202. 202.
    Lara, H. H., Ayala-Nunez, N. V., Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology, 8, 1.  https://doi.org/10.1186/1477-3155-8-1.CrossRefGoogle Scholar
  203. 203.
    Naganawa, S., Yokoyama, M., Shiino, T., Suzuki, T., Ishigatsubo, Y., Ueda, A., Shirai, A., Takeno, M., Hayakawa, S., Sato, S., Tochikubo, O., Kiyoura, S., Sawada, K., Ikegami, T., Kanda, T., Kitamura, K., & Sato, H. (2008). Net positive charge of HIV-1 CRF01_AE V3 sequence regulates viral sensitivity to humoral immunity. PLoS One, 3(9), e3206.  https://doi.org/10.1371/journal.pone.0003206.CrossRefGoogle Scholar
  204. 204.
    Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3, 6.  https://doi.org/10.1186/1477-3155-3-6.CrossRefGoogle Scholar
  205. 205.
    Borkow, G., & Lapidot, A. (2005). Multi-targeting the entrance door to block HIV-1. Current Drug Targets. Infectious Disorders, 5(1), 3–15.CrossRefGoogle Scholar
  206. 206.
    Salunkhe, R. B., Patil, S. V., Patil, C. D., & Salunke, B. K. (2011). Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitology Research, 109(3), 823–831.  https://doi.org/10.1007/s00436-011-2328-1.CrossRefGoogle Scholar
  207. 207.
    Shanmugasundaram, T., & Balagurunathan, R. (2015). Mosquito larvicidal activity of silver nanoparticles synthesised using actinobacterium, Streptomyces sp. M25 against Anopheles subpictus, Culex quinquefasciatus and Aedes aegypti. Journal of Parasitic Diseases, 39(4), 677–684.  https://doi.org/10.1007/s12639-013-0412-4.CrossRefGoogle Scholar
  208. 208.
    Adesuji, E. T., Oluwaniyi, O. O., Adegoke, H. I., Moodley, R., Labulo, A. H., Bodede, O. S., & Oseghale, C. O. (2016). Investigation of the larvicidal potential of silver nanoparticles against Culex quinquefasciatus: a case of a ubiquitous weed as a useful bioresource. Journal of Nanomaterials, 2016, 1–11.  https://doi.org/10.1155/2016/4363751.
  209. 209.
    Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., & Xing, M. M. (2014). Nanosilver particles in medical applications: synthesis, performance, and toxicity. International Journal of Nanomedicine, 9, 2399–2407.  https://doi.org/10.2147/IJN.S55015.Google Scholar
  210. 210.
    Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers, S., De Jong, W. H., van Zijverden, M., Sips, A. J. A. M., & Geertsma, R. E. (2009). Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3(2), 109–138.  https://doi.org/10.1080/17435390902725914.CrossRefGoogle Scholar
  211. 211.
    Lohani, A., Verma, A., Joshi, H., Yadav, N., & Karki, N. (2014). Nanotechnology-based cosmeceuticals. ISRN Dermatology, 2014, 1–14.  https://doi.org/10.1155/2014/843687.
  212. 212.
    Alfadul, S. M., & Elneshwy, A. A. (2010). Use of nanotechnology in food processing, packaging and safety—review. African Journal of Food Agriculture Nutrition and Development, 10(6), 2719–2739.CrossRefGoogle Scholar
  213. 213.
    Huang, Y., Chen, S., Bing, X., Gao, C., Wang, T., & Yuan, B. (2011). Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technology and Science, 24(5), 291–297.  https://doi.org/10.1002/pts.938.CrossRefGoogle Scholar
  214. 214.
    Reidy, B. A., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials, 6(6), 2295–2350.  https://doi.org/10.3390/ma6062295.CrossRefGoogle Scholar
  215. 215.
    Cao, H., & Liu, X. (2010). Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2(6), 670–684.  https://doi.org/10.1002/wnan.113.Google Scholar
  216. 216.
    Austin, L. A., Kang, B., Yen, C. W., & El-Sayed, M. A. (2011). Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjugate Chemistry, 22(11), 2324–2331.  https://doi.org/10.1021/bc200386m.CrossRefGoogle Scholar
  217. 217.
    Wong, K. K. Y., & Liu, X. (2010). Silver nanoparticles-the real “silver bullet” in clinical medicine? Medicinal Chemistry Communications, 1(2), 125–131.  https://doi.org/10.1039/c0md00069h.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Aqib Javaid
    • 1
  • Sandra Folarin Oloketuyi
    • 1
  • Mohammad Mansoob Khan
    • 2
  • Fazlurrahman Khan
    • 1
  1. 1.Department of Biotechnology, School of Engineering and TechnologySharda UniversityGreater NoidaIndia
  2. 2.Chemical SciencesUniversiti Brunei DarussalamGadongBrunei Darussalam

Personalised recommendations