BioNanoScience

, Volume 8, Issue 1, pp 459–466 | Cite as

Extraction and Serological Properties of Mycobacterium Cell Surface and Excreted Proteins

  • Kamil S. Khaertynov
  • Anna R. Valeeva
  • Arkadiy V. Ivanov
  • Malik N. Mukminov
  • Nail G. Urazov
  • Ilsiyar M. Khaertynova
  • Natalya M. Aleksandrova
  • Albina V. Moskvicheva
  • Marina A. Efimova
  • Rafail M. Akhmadeev
  • Elvira S. Samigullina
  • Alexey A. Nabatov
  • Eduard A. Shuralev
Article
  • 33 Downloads

Abstract

Modern medicine still faces the task of distinguishing active and latent tuberculosis cases at the early stage of the disease. Serological approaches have their advantages for their use in diagnostics. However, the progress of these approaches is ongoing but further progress is needed to meet the needs for this disease. Here, we extracted Mycobacterium tuberculosis H37Rv proteins from culture medium or from the cell surface and studied their reactivity with anti-M. tuberculosis serum in both ELISA and immunoblots. We found that M. tuberculosis surface proteins, extracted using dimethyl sulfoxide, with molecular weights in the range of 6.5–200 kDa, showed strong specific reactivity with anti-M. tuberculosis positive serum. While excreted proteins in the molecular weight range of 32–45 kDa had the highest reactivity. The latter was confirmed serologically when very weak signal was detected from the filtrate fractions compared to stronger activity from the Vivaspin 50 kDa MWCO retentates. Moreover, Mycobacterium bovis and tuberculosis proteins from the filter retentates had clear specific serum reactivity, which suggests that this approach can be used for differential diagnosis of two infections.

Keywords

Mycobacterium tuberculosis Proteins DMSO Antigens Vivaspin Immunoblot 

Notes

Compliance with Ethical Standards

Animals were not used in this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhang, X., Huang, T., Wu, Y., Peng, W., Xie, H., Pan, M., Zhou, H., Cai, B., & Wu, Y. (2017). Inhibition of the PI3K-Akt-mTOR signaling pathway in T lymphocytes in patients with active tuberculosis. International Journal of Infectious Diseases, 59, 110–117.  https://doi.org/10.1016/j.ijid.2017.04.004.CrossRefGoogle Scholar
  2. 2.
    Méndez-Samperio, P. (2017). Diagnosis of tuberculosis in HIV co-infected individuals: current status, challenges and opportunities for the future. Scandinavian Journal of Immunology, 86(2), 76–82.  https://doi.org/10.1111/sji.12567.CrossRefGoogle Scholar
  3. 3.
    Hesseling, A. C., & Rabie, H. (2016). Tuberculosis and HIV remain major causes of death in African children. The International Journal of Tuberculosis and Lung Disease, 20(8), 996–997.  https://doi.org/10.5588/ijtld.16.0449.CrossRefGoogle Scholar
  4. 4.
    Gupta, R. K., Lucas, S. B., Fielding, K. L., & Lawn, S. D. (2015). Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS, 29(15), 1987–2002.  https://doi.org/10.1097/QAD.0000000000000802.CrossRefGoogle Scholar
  5. 5.
    Tiberi, S., Carvalho, A. C., Sulis, G., Vaghela, D., Rendon, A., Mello, F. C., Rahman, A., Matin, N., Zumla, A., & Pontali, E. (2017). The cursed duet today: tuberculosis and HIV-coinfection. Presse Médicale, 46(2 Pt 2), e23–e39.  https://doi.org/10.1016/j.lpm.2017.01.017.CrossRefGoogle Scholar
  6. 6.
    Dye, C., & Williams, B. G. (2010). The population dynamics and control of tuberculosis. Science, 328(5980), 856–861.  https://doi.org/10.1126/science.1185449.CrossRefGoogle Scholar
  7. 7.
    Lawn, S. D., & Zumla, A. I. (2011). Tuberculosis. Lancet, 378(9785), 57–72.  https://doi.org/10.1016/S0140-6736(10)62173-3.CrossRefGoogle Scholar
  8. 8.
    Chegou, N. N., Black, G. F., Loxton, A. G., Stanley, K., Essone, P. N., Klein, M. R., Parida, S. K., Kaufmann, S. H., Doherty, T. M., Friggen, A. H., Franken, K. L., Ottenhoff, T. H., & Walzl, G. (2012). Potential of novel mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infectious Diseases, 12, 10.  https://doi.org/10.1186/1471-2334-12-10.CrossRefGoogle Scholar
  9. 9.
    Sakamuri, R. M., Price, D. N., Lee, M., Cho, S. N., Barry III, C. E., Via, L. E., Swanson, B. I., & Mukundan, H. (2013). Association of lipoarabinomannan with high density lipoprotein in blood: implications for diagnostics. Tuberculosis (Edinburgh, Scotland), 93(3), 301–307.  https://doi.org/10.1016/j.tube.2013.02.015.CrossRefGoogle Scholar
  10. 10.
    Shah, M., Martinson, N. A., Chaisson, R. E., Martin, D. J., Variava, E., & Dorman, S. E. (2010). Quantitative analysis of a urine-based assay for detection of lipoarabinomannan in patients with tuberculosis. Journal of Clinical Microbiology, 48(8), 2972–2974.  https://doi.org/10.1128/JCM.00363-10.CrossRefGoogle Scholar
  11. 11.
    Demissie, A., Leyten, E. M., Abebe, M., Wassie, L., Aseffa, A., Abate, G., Fletcher, H., Owiafe, P., Hill, P. C., Brookes, R., Rook, G., Zumla, A., Arend, S. M., Klein, M., Ottenhoff, T. H., Andersen, P., Doherty, T. M., & VACSEL Study Group. (2006). Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with mycobacterium tuberculosis. Clinical and Vaccine Immunology, 13(2), 179–186.CrossRefGoogle Scholar
  12. 12.
    Russell, R. B., & Eggleston, D. S. (2000). New roles for structure in biology and drug discovery. Nature Structural Biology, 7(Suppl), 928–930.CrossRefGoogle Scholar
  13. 13.
    Xiong, Y., Chalmers, M. J., Gao, F. P., Cross, T. A., & Marshall, A. G. (2005). Identification of mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Proteome Research, 4(3), 855–861.CrossRefGoogle Scholar
  14. 14.
    Chang, N., Hen, S. J., & Klibanov, A. M. (1991). Protein separation and purification in neat dimethyl sulfoxide. Biochemical and Biophysical Research Communications, 176(3), 1462–1468.CrossRefGoogle Scholar
  15. 15.
    Hoffmann, E. M., & Houle, J. J. (1986). Purification of nonlipopolysaccharide antigen from Brucella abortus during preparation of antigen used for indirect hemolysis test. Journal of Clinical Microbiology, 24(5), 779–784.Google Scholar
  16. 16.
    Khaertynova, I. M., Tsibulkin, A. P., Valiev, R. S., Romanenko, O. M., Filimonova, M. N., Urazov, N. G., & Khaertynov, K. S. (2011). Method for producing antigen preparation from mycobacterium tuberculosis with extended-spectrum serum-positive fractions in Western blotting reaction. RU Patent No 2431675. Moscow: Rospatent.Google Scholar
  17. 17.
    Tsibulkin, A. P., Khaertinova, I. M., Urazov, N. G., & Khaertinov, K. S. (2016). The screening of diagnostic potential of native protein fractions of mycobacterium tuberculosis using technique of immune blotting. Klinicheskaia Laboratornaia Diagnostika, 61(2), 90–92 102.Google Scholar
  18. 18.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  19. 19.
    Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4350–4354.CrossRefGoogle Scholar
  20. 20.
    Wisselink, H. J., van Solt-Smits, C. B., Oorburg, D., van Soolingen, D., Overduin, P., Maneschijn-Bonsing, J., Stockhofe-Zurwieden, N., Buys-Bergen, H., Engel, B., Urlings, B. A., & Thole, J. E. (2010). Serodiagnosis of Mycobacterium avium infections in pigs. Veterinary Microbiology, 142(3–4), 401–407.  https://doi.org/10.1016/j.vetmic.2009.11.003.CrossRefGoogle Scholar
  21. 21.
    Steingart, K. R., Flores, L. L., Dendukuri, N., Schiller, I., Laal, S., Ramsay, A., Hopewell, P. C., & Pai, M. (2011). Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: an updated systematic review and meta-analysis. PLoS Medicine, 8(8), e1001062.  https://doi.org/10.1371/journal.pmed.1001062.CrossRefGoogle Scholar
  22. 22.
    Ndlandla, F. L., Ejoh, V., Stoltz, A. C., Naicker, B., Cromarty, A. D., van Wyngaardt, S., Khati, M., Rotherham, L. S., Lemmer, Y., Niebuhr, J., Baumeister, C. R., Al Dulayymi, J. R., Swai, H., Baird, M. S., & Verschoor, J. A. (2016). Standardization of natural mycolic acid antigen composition and production for use in biomarker antibody detection to diagnose active tuberculosis. Journal of Immunological Methods, 435, 50–59.  https://doi.org/10.1016/j.jim.2016.05.010.CrossRefGoogle Scholar
  23. 23.
    Julián, E., Cama, M., Martínez, P., & Luquin, M. (2001). An ELISA for five glycolipids from the cell wall of mycobacterium tuberculosis: tween 20 interference in the assay. Journal of Immunological Methods, 251(1–2), 21–30.CrossRefGoogle Scholar
  24. 24.
    Traunmüller, F., Haslinger, I., Lagler, H., Wolfgang, G., Zeitlinger, M. A., & Abdel Salam, H. A. (2005). Influence of the washing buffer composition on the sensitivity of an enzyme-linked immunosorbent assay using mycobacterial glycolipids as capture antigens. Journal of Immunoassay & Immunochemistry, 26(3), 179–188.CrossRefGoogle Scholar
  25. 25.
    Schmidt, R., Jacak, J., Schirwitz, C., Stadler, V., Michel, G., Marmé, N., Schütz, G. J., Hoheisel, J. D., & Knemeyer, J. P. (2011). Single-molecule detection on a protein-array assay platform for the exposure of a tuberculosis antigen. Journal of Proteome Research, 10(3), 1316–1322.  https://doi.org/10.1021/pr101070j.CrossRefGoogle Scholar
  26. 26.
    Whelan, C., Shuralev, E., O'Keeffe, G., Hyland, P., Kwok, H. F., Snoddy, P., O'Brien, A., Connolly, M., Quinn, P., Groll, M., Watterson, T., Call, S., Kenny, K., Duignan, A., Hamilton, M. J., Buddle, B. M., Johnston, J. A., Davis, W. C., Olwill, S. A., & Clarke, J. (2008). Multiplex immunoassay for serological diagnosis of Mycobacterium bovis infection in cattle. Clinical and Vaccine Immunology, 15(12), 1834–1838.  https://doi.org/10.1128/CVI.00238-08.CrossRefGoogle Scholar
  27. 27.
    Shuralev, E., Quinn, P., Doyle, M., Duignan, A., Kwok, H. F., Bezos, J., Olwill, S. A., Gormley, E., Aranaz, A., Good, M., Davis, W. C., Clarke, J., & Whelan, C. (2012). Application of the enfer chemiluminescent multiplex ELISA system for the detection of Mycobacterium bovis infection in goats. Veterinary Microbiology, 154(3–4), 292–297.  https://doi.org/10.1016/j.vetmic.2011.07.028.CrossRefGoogle Scholar
  28. 28.
    He, F., Xiong, Y., Liu, J., Tong, F., & Yan, D. (2016). Construction of au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of mycobacterium tuberculosis. Biosensors & Bioelectronics, 77, 799–804.  https://doi.org/10.1016/j.bios.2015.10.054.CrossRefGoogle Scholar
  29. 29.
    Samten, B., Fannin, S., Sarva, K., Yi, N., Madiraju, M., & Rajagopalan, M. (2016). Modulation of human T cell cytokines by the mycobacterium tuberculosis-secreted protein Wag31. Tuberculosis (Edinburgh, Scotland), 101S, S99–S104.  https://doi.org/10.1016/j.tube.2016.09.017.CrossRefGoogle Scholar
  30. 30.
    Son, S. J., Harris, P. W., Squire, C. J., Baker, E. N., & Brimble, M. A. (2016). Synthesis and structural insight into ESX-1 substrate protein C, an immunodominant mycobacterium tuberculosis-secreted antigen. Biopolymers, 106(3), 267–274.  https://doi.org/10.1002/bip.22838.CrossRefGoogle Scholar
  31. 31.
    Whelan, C., Whelan, A. O., Shuralev, E., Kwok, H. F., Hewinson, G., Clarke, J., & Vordermeier, H. M. (2010). Performance of the Enferplex TB assay with cattle in Great Britain and assessment of its suitability as a test to distinguish infected and vaccinated animals. Clinical and Vaccine Immunology, 17(5), 813–817.  https://doi.org/10.1128/CVI.00489-09.CrossRefGoogle Scholar
  32. 32.
    Sabry, M., & Elkerdasy, A. (2014). A polymerase chain reaction and enzyme linked immunosorbent assay based approach for diagnosis and differentiation between vaccinated and infected cattle with Mycobacterium bovis. Journal of Pharmacy & Bioallied Sciences, 6(2), 115–121.  https://doi.org/10.4103/0975-7406.126584.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Kamil S. Khaertynov
    • 1
    • 2
  • Anna R. Valeeva
    • 1
  • Arkadiy V. Ivanov
    • 2
  • Malik N. Mukminov
    • 1
    • 3
  • Nail G. Urazov
    • 4
  • Ilsiyar M. Khaertynova
    • 1
  • Natalya M. Aleksandrova
    • 2
    • 5
  • Albina V. Moskvicheva
    • 2
  • Marina A. Efimova
    • 2
  • Rafail M. Akhmadeev
    • 2
  • Elvira S. Samigullina
    • 3
  • Alexey A. Nabatov
    • 1
    • 6
    • 7
  • Eduard A. Shuralev
    • 1
    • 2
    • 3
  1. 1.Central Research Laboratory, Kazan State Medical Academy—Branch Campus of the Federal State Budgetary Educational Institution of Further Professional EducationRussian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian FederationKazanRussian Federation
  2. 2.Federal Center for Toxicological, Radiation and Biological SafetyKazanRussian Federation
  3. 3.Department of Applied Ecology, Institute of Environmental SciencesKazan Federal UniversityKazanRussian Federation
  4. 4.Republican Center for the Prevention and Control of AIDS and Infectious Diseases of the Ministry of Health of the Republic of TatarstanKazanRussian Federation
  5. 5.Combinatorial Chemistry and Neurobiology OpenLab, Institute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussian Federation
  6. 6.Science Center, Volga Region State Academy of Physical Culture, Sports and TourismKazanRussian Federation
  7. 7.Department of BiochemistryKazan State Medical UniversityKazanRussian Federation

Personalised recommendations