Skip to main content

Advertisement

Log in

Extraction and Serological Properties of Mycobacterium Cell Surface and Excreted Proteins

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Modern medicine still faces the task of distinguishing active and latent tuberculosis cases at the early stage of the disease. Serological approaches have their advantages for their use in diagnostics. However, the progress of these approaches is ongoing but further progress is needed to meet the needs for this disease. Here, we extracted Mycobacterium tuberculosis H37Rv proteins from culture medium or from the cell surface and studied their reactivity with anti-M. tuberculosis serum in both ELISA and immunoblots. We found that M. tuberculosis surface proteins, extracted using dimethyl sulfoxide, with molecular weights in the range of 6.5–200 kDa, showed strong specific reactivity with anti-M. tuberculosis positive serum. While excreted proteins in the molecular weight range of 32–45 kDa had the highest reactivity. The latter was confirmed serologically when very weak signal was detected from the filtrate fractions compared to stronger activity from the Vivaspin 50 kDa MWCO retentates. Moreover, Mycobacterium bovis and tuberculosis proteins from the filter retentates had clear specific serum reactivity, which suggests that this approach can be used for differential diagnosis of two infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang, X., Huang, T., Wu, Y., Peng, W., Xie, H., Pan, M., Zhou, H., Cai, B., & Wu, Y. (2017). Inhibition of the PI3K-Akt-mTOR signaling pathway in T lymphocytes in patients with active tuberculosis. International Journal of Infectious Diseases, 59, 110–117. https://doi.org/10.1016/j.ijid.2017.04.004.

    Article  Google Scholar 

  2. Méndez-Samperio, P. (2017). Diagnosis of tuberculosis in HIV co-infected individuals: current status, challenges and opportunities for the future. Scandinavian Journal of Immunology, 86(2), 76–82. https://doi.org/10.1111/sji.12567.

    Article  Google Scholar 

  3. Hesseling, A. C., & Rabie, H. (2016). Tuberculosis and HIV remain major causes of death in African children. The International Journal of Tuberculosis and Lung Disease, 20(8), 996–997. https://doi.org/10.5588/ijtld.16.0449.

    Article  Google Scholar 

  4. Gupta, R. K., Lucas, S. B., Fielding, K. L., & Lawn, S. D. (2015). Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS, 29(15), 1987–2002. https://doi.org/10.1097/QAD.0000000000000802.

    Article  Google Scholar 

  5. Tiberi, S., Carvalho, A. C., Sulis, G., Vaghela, D., Rendon, A., Mello, F. C., Rahman, A., Matin, N., Zumla, A., & Pontali, E. (2017). The cursed duet today: tuberculosis and HIV-coinfection. Presse Médicale, 46(2 Pt 2), e23–e39. https://doi.org/10.1016/j.lpm.2017.01.017.

    Article  Google Scholar 

  6. Dye, C., & Williams, B. G. (2010). The population dynamics and control of tuberculosis. Science, 328(5980), 856–861. https://doi.org/10.1126/science.1185449.

    Article  Google Scholar 

  7. Lawn, S. D., & Zumla, A. I. (2011). Tuberculosis. Lancet, 378(9785), 57–72. https://doi.org/10.1016/S0140-6736(10)62173-3.

    Article  Google Scholar 

  8. Chegou, N. N., Black, G. F., Loxton, A. G., Stanley, K., Essone, P. N., Klein, M. R., Parida, S. K., Kaufmann, S. H., Doherty, T. M., Friggen, A. H., Franken, K. L., Ottenhoff, T. H., & Walzl, G. (2012). Potential of novel mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infectious Diseases, 12, 10. https://doi.org/10.1186/1471-2334-12-10.

    Article  Google Scholar 

  9. Sakamuri, R. M., Price, D. N., Lee, M., Cho, S. N., Barry III, C. E., Via, L. E., Swanson, B. I., & Mukundan, H. (2013). Association of lipoarabinomannan with high density lipoprotein in blood: implications for diagnostics. Tuberculosis (Edinburgh, Scotland), 93(3), 301–307. https://doi.org/10.1016/j.tube.2013.02.015.

    Article  Google Scholar 

  10. Shah, M., Martinson, N. A., Chaisson, R. E., Martin, D. J., Variava, E., & Dorman, S. E. (2010). Quantitative analysis of a urine-based assay for detection of lipoarabinomannan in patients with tuberculosis. Journal of Clinical Microbiology, 48(8), 2972–2974. https://doi.org/10.1128/JCM.00363-10.

    Article  Google Scholar 

  11. Demissie, A., Leyten, E. M., Abebe, M., Wassie, L., Aseffa, A., Abate, G., Fletcher, H., Owiafe, P., Hill, P. C., Brookes, R., Rook, G., Zumla, A., Arend, S. M., Klein, M., Ottenhoff, T. H., Andersen, P., Doherty, T. M., & VACSEL Study Group. (2006). Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with mycobacterium tuberculosis. Clinical and Vaccine Immunology, 13(2), 179–186.

    Article  Google Scholar 

  12. Russell, R. B., & Eggleston, D. S. (2000). New roles for structure in biology and drug discovery. Nature Structural Biology, 7(Suppl), 928–930.

    Article  Google Scholar 

  13. Xiong, Y., Chalmers, M. J., Gao, F. P., Cross, T. A., & Marshall, A. G. (2005). Identification of mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Proteome Research, 4(3), 855–861.

    Article  Google Scholar 

  14. Chang, N., Hen, S. J., & Klibanov, A. M. (1991). Protein separation and purification in neat dimethyl sulfoxide. Biochemical and Biophysical Research Communications, 176(3), 1462–1468.

    Article  Google Scholar 

  15. Hoffmann, E. M., & Houle, J. J. (1986). Purification of nonlipopolysaccharide antigen from Brucella abortus during preparation of antigen used for indirect hemolysis test. Journal of Clinical Microbiology, 24(5), 779–784.

    Google Scholar 

  16. Khaertynova, I. M., Tsibulkin, A. P., Valiev, R. S., Romanenko, O. M., Filimonova, M. N., Urazov, N. G., & Khaertynov, K. S. (2011). Method for producing antigen preparation from mycobacterium tuberculosis with extended-spectrum serum-positive fractions in Western blotting reaction. RU Patent No 2431675. Moscow: Rospatent.

  17. Tsibulkin, A. P., Khaertinova, I. M., Urazov, N. G., & Khaertinov, K. S. (2016). The screening of diagnostic potential of native protein fractions of mycobacterium tuberculosis using technique of immune blotting. Klinicheskaia Laboratornaia Diagnostika, 61(2), 90–92 102.

    Google Scholar 

  18. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  Google Scholar 

  19. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4350–4354.

    Article  Google Scholar 

  20. Wisselink, H. J., van Solt-Smits, C. B., Oorburg, D., van Soolingen, D., Overduin, P., Maneschijn-Bonsing, J., Stockhofe-Zurwieden, N., Buys-Bergen, H., Engel, B., Urlings, B. A., & Thole, J. E. (2010). Serodiagnosis of Mycobacterium avium infections in pigs. Veterinary Microbiology, 142(3–4), 401–407. https://doi.org/10.1016/j.vetmic.2009.11.003.

    Article  Google Scholar 

  21. Steingart, K. R., Flores, L. L., Dendukuri, N., Schiller, I., Laal, S., Ramsay, A., Hopewell, P. C., & Pai, M. (2011). Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: an updated systematic review and meta-analysis. PLoS Medicine, 8(8), e1001062. https://doi.org/10.1371/journal.pmed.1001062.

    Article  Google Scholar 

  22. Ndlandla, F. L., Ejoh, V., Stoltz, A. C., Naicker, B., Cromarty, A. D., van Wyngaardt, S., Khati, M., Rotherham, L. S., Lemmer, Y., Niebuhr, J., Baumeister, C. R., Al Dulayymi, J. R., Swai, H., Baird, M. S., & Verschoor, J. A. (2016). Standardization of natural mycolic acid antigen composition and production for use in biomarker antibody detection to diagnose active tuberculosis. Journal of Immunological Methods, 435, 50–59. https://doi.org/10.1016/j.jim.2016.05.010.

    Article  Google Scholar 

  23. Julián, E., Cama, M., Martínez, P., & Luquin, M. (2001). An ELISA for five glycolipids from the cell wall of mycobacterium tuberculosis: tween 20 interference in the assay. Journal of Immunological Methods, 251(1–2), 21–30.

    Article  Google Scholar 

  24. Traunmüller, F., Haslinger, I., Lagler, H., Wolfgang, G., Zeitlinger, M. A., & Abdel Salam, H. A. (2005). Influence of the washing buffer composition on the sensitivity of an enzyme-linked immunosorbent assay using mycobacterial glycolipids as capture antigens. Journal of Immunoassay & Immunochemistry, 26(3), 179–188.

    Article  Google Scholar 

  25. Schmidt, R., Jacak, J., Schirwitz, C., Stadler, V., Michel, G., Marmé, N., Schütz, G. J., Hoheisel, J. D., & Knemeyer, J. P. (2011). Single-molecule detection on a protein-array assay platform for the exposure of a tuberculosis antigen. Journal of Proteome Research, 10(3), 1316–1322. https://doi.org/10.1021/pr101070j.

    Article  Google Scholar 

  26. Whelan, C., Shuralev, E., O'Keeffe, G., Hyland, P., Kwok, H. F., Snoddy, P., O'Brien, A., Connolly, M., Quinn, P., Groll, M., Watterson, T., Call, S., Kenny, K., Duignan, A., Hamilton, M. J., Buddle, B. M., Johnston, J. A., Davis, W. C., Olwill, S. A., & Clarke, J. (2008). Multiplex immunoassay for serological diagnosis of Mycobacterium bovis infection in cattle. Clinical and Vaccine Immunology, 15(12), 1834–1838. https://doi.org/10.1128/CVI.00238-08.

    Article  Google Scholar 

  27. Shuralev, E., Quinn, P., Doyle, M., Duignan, A., Kwok, H. F., Bezos, J., Olwill, S. A., Gormley, E., Aranaz, A., Good, M., Davis, W. C., Clarke, J., & Whelan, C. (2012). Application of the enfer chemiluminescent multiplex ELISA system for the detection of Mycobacterium bovis infection in goats. Veterinary Microbiology, 154(3–4), 292–297. https://doi.org/10.1016/j.vetmic.2011.07.028.

    Article  Google Scholar 

  28. He, F., Xiong, Y., Liu, J., Tong, F., & Yan, D. (2016). Construction of au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of mycobacterium tuberculosis. Biosensors & Bioelectronics, 77, 799–804. https://doi.org/10.1016/j.bios.2015.10.054.

    Article  Google Scholar 

  29. Samten, B., Fannin, S., Sarva, K., Yi, N., Madiraju, M., & Rajagopalan, M. (2016). Modulation of human T cell cytokines by the mycobacterium tuberculosis-secreted protein Wag31. Tuberculosis (Edinburgh, Scotland), 101S, S99–S104. https://doi.org/10.1016/j.tube.2016.09.017.

    Article  Google Scholar 

  30. Son, S. J., Harris, P. W., Squire, C. J., Baker, E. N., & Brimble, M. A. (2016). Synthesis and structural insight into ESX-1 substrate protein C, an immunodominant mycobacterium tuberculosis-secreted antigen. Biopolymers, 106(3), 267–274. https://doi.org/10.1002/bip.22838.

    Article  Google Scholar 

  31. Whelan, C., Whelan, A. O., Shuralev, E., Kwok, H. F., Hewinson, G., Clarke, J., & Vordermeier, H. M. (2010). Performance of the Enferplex TB assay with cattle in Great Britain and assessment of its suitability as a test to distinguish infected and vaccinated animals. Clinical and Vaccine Immunology, 17(5), 813–817. https://doi.org/10.1128/CVI.00489-09.

    Article  Google Scholar 

  32. Sabry, M., & Elkerdasy, A. (2014). A polymerase chain reaction and enzyme linked immunosorbent assay based approach for diagnosis and differentiation between vaccinated and infected cattle with Mycobacterium bovis. Journal of Pharmacy & Bioallied Sciences, 6(2), 115–121. https://doi.org/10.4103/0975-7406.126584.

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard A. Shuralev.

Ethics declarations

Animals were not used in this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaertynov, K.S., Valeeva, A.R., Ivanov, A.V. et al. Extraction and Serological Properties of Mycobacterium Cell Surface and Excreted Proteins. BioNanoSci. 8, 459–466 (2018). https://doi.org/10.1007/s12668-017-0492-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0492-1

Keywords

Navigation