Skip to main content
Log in

Preventing Common Hereditary Disorders through Time-Separated Twinning

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Biomedical advances have led to a relaxation of natural selection in the human population of developed countries. In the absence of strong purifying selection, spontaneous and frequently deleterious mutations tend to accumulate in the human genome and gradually increase the genetic load; that is, the frequency of potentially lethal genes in the gene pool. Gradual increase in incidence of many complex disorders suggests deleterious impact of the genetic load on human well-being. Recent advances in in vitro fertilization (IVF) combined with artificial twinning and transgenerational embryo cryoconservation offer the possibility of preventing significant accumulation of genetic load and reducing the incidence of hereditary disorders. Many complex diseases such as type 1 and 2 diabetes, autism, bipolar disorder, allergies, Alzheimer’s disease, and some cancers show significantly higher concordance in monozygotic (MZ) twins than in fraternal twins (dizygotic, DZ) or parent-child pairs, suggesting their etiology is strongly influenced by genetics. Preventing these diseases based on genetic data alone is frequently impossible due to the complex interplay between genetic and environmental factors. We hypothesize that the incidence of complex diseases could be significantly reduced in the future through a strategy based on time-separated twinning. This strategy involves the collection and fertilization of human oocytes followed by several rounds of artificial twinning. If preimplantation genetic screening (PGS) reports no aneuploidy or known Mendelian disorders, one of the MZ siblings would be implanted and the remaining embryos cryoconserved. Once the good health of the adult MZ sibling(s) is established, subsequent parenthood with the cryoconserved co-twins could substantially lower the incidence of hereditary disorders with complex etiology and virtually eradicate simple Mendelian disorders. The proposed method of artificial twinning has the potential to alleviate suffering and reduce the negative social impact induced by dysgenic effects associated with known and unknown genetic factors. Time-separated twinning has the capacity to prevent further accumulation of the genetic load and to provide source of isogenic embryonic stem cells for future regenerative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crow, J. F. (2000). The origins, patterns and implications of human spontaneous mutation. Nature Reviews Genetics, 1, 40–47.

    Article  Google Scholar 

  2. Stephan, C. N., & Henneberg, M. (2001). Medicine may be reducing the human capacity to survive. Medical Hypotheses, 57(5), 633–637.

    Article  Google Scholar 

  3. Lynch, M. (2010). Rate, molecular spectrum, and consequences of human mutation. PNAS, 107(3), 961–968.

    Article  Google Scholar 

  4. Muller, H. J. (1950). Our load of mutations. American Journal of Human Genetics, 2, 111–176.

    Google Scholar 

  5. Dilworth C. (2009). Too smart for our own good: the ecological predicament of humankind, Cambridge University Press chap. 4:136.

  6. Sawyer, S. A., Parsch, J., Zhang, Z., & Hartl, D. L. (2007). Prevalence of positive selection among nearly neutral amino acid replacements in drosophila. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6504–6510.

    Article  Google Scholar 

  7. Roach, J. C., Glusman, G., Smit, A. F. A., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant, K. P., Goodman, N., Bamshad, M., Shendure, J., Drmanac, R., Jorde, L. B., Hood, L., & Galas, D. J. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328(5978), 636–639.

    Article  Google Scholar 

  8. Nachman, M. W., & Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics, 156, 297–304.

    Google Scholar 

  9. Eyre-Walker, A., & Keightley, P. D. (1999). High genomic deleterious mutation rates in hominids. Nature, 397, 344–347.

    Article  Google Scholar 

  10. Eory, L., Halligan, D. L., & Keightley, P. D. (2010). Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes. Molecular Biology and Evolution, 27, 177–192.

    Article  Google Scholar 

  11. MacArthur, D. G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., Jostins, L., Habegger, L., Pickrell, J. K., Montgomery, S. B., Albers, C. A., Zhang, Z. D., Conrad, D. F., Lunter, G., Zheng, H., Ayub, Q., DePristo, M. A., Banks, E., Hu, M., Handsaker, R. E., Rosenfeld, J. A., Fromer, M., Jin, M., Mu, X. J., Khurana, E., Ye, K., Kay, M., Saunders, G. I., Suner, M. M., Hunt, T., IHA, B., Amid, C., Carvalho-Silva, D. R., Bignell, A. H., Snow, C., Yngvadottir, B., Bumpstead, S., Cooper, D. N., Xue, Y., Romero, I. G., Consortium, G. P., Wang, J., Li, Y., Gibbs, R. A., McCarroll, S. A., Dermitzakis, E. T., Pritchard, J. K., Barrett, J. C., Harrow, J., Hurles, M. E., Gerstein, M. B., & Tyler-Smith, C. (2012). A systematic survey of loss-of-function variants in human protein-coding genes. Science, 335(6070), 823–828.

    Article  Google Scholar 

  12. (WHOSIS) WSIS (2009). World Health Statistics [http://www.who.int/whosis/whostat/2009/en/index.html].

  13. Darwin, C. (1871). The descent of man, and selection in relation to sex. London: Murray.

    Book  Google Scholar 

  14. Glad, J. (2008). Future human evolution: eugenics in the twenty-first century. Hermitage Publishers. [Available at: http://whatwemaybe.org/].

  15. Kevles, D.J. (1985). In the name of eugenics: genetics and the uses of human heredity. University of California Press, Berkeley and Los Angeles. [Available at: http://books.google.com.hk/books/about/Inthenameofeugenics.html?id=8esnhRxBomMC].

  16. Chiu, R. W., Akolekar, R., Zheng, Y. W., Leung, T. Y., Sun, H., Chan, K. C., Lun, F. M., Go, A. T., Lau, E. T., To, W. W., Leung, W. C., Tang, R. Y., Au-Yeung, S. K., Lam, H., Kung, Y. Y., Zhang, X., van Vugt, J. M., Minekawa, R., Tang, M. H., Wang, J., Oudejans, C. B., Lau, T. K., Nicolaides, K. H., & Lo, Y. M. (2011). Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ, 342, c7401.

    Article  Google Scholar 

  17. Bell, C. J., Dinwiddie, D. L., Miller, N. A., Hateley, S. L., Ganusova, E. E., Mudge, J., Langley, R. J., Zhang, L., Lee, C. C., Schilkey, F. D., Sheth, V., Woodward, J. E., Peckham, H. E., Schroth, G. P., Kim, R. W., & Kingsmore, S. F. (2011). Carrier testing for severe childhood recessive diseases by next-generation sequencing. Science Translational Medicine, 3(65), 65ra4.

    Article  Google Scholar 

  18. Lieber, D. S., Vafai, S. B., Horton, L. C., Slate, N. G., Liu, S., Borowsky, M. L., Calvo, S. E., Schmahmann, J. D., & Mootha, V. K. (2012). Atypical case of Wolfram syndrome revealed through targeted exome sequencing in a patient with suspected mitochondrial disease. BMC Medical Genetics, 13(3).

  19. Craven, L., Tuppen, H. A., Greggains, G. D., Harbottle, S. J., Murphy, J. L., Cree, L. M., Murdoch, A. P., Chinnery, P. F., Taylor, R. W., Lightowlers, R. N., Herbert, M., & Turnbull, D. M. (2010). Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 465, 82–85.

    Article  Google Scholar 

  20. Illmensee, K., Levanduski, M., Vidali, A., Husami, N., & Goudas, V. T. (2010). Human embryo twinning with applications in reproductive medicine. Fertility and Sterility, 93(2), 423–427.

    Article  Google Scholar 

  21. Trounson, A., & Mohr, L. (1983). Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature, 305, 707–709.

    Article  Google Scholar 

  22. van Dongen, J., Slagboom, P. E., Draisma, H. H. M., Martin, N. G., & Boomsma, D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13(9), 640–653.

    Article  Google Scholar 

  23. Redondo, M. J., Yu, L., Hawa, M., Mackenzie, T., Pyke, D. A., Eisenbarth, G. S., & Leslie, R. D. G. (2001). Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia, 44, 354–362.

    Article  Google Scholar 

  24. Kumar, D., Gemayel, N. S., Deapen, D., Kapadia, D., Yamashita, P. H., Lee, M., Dwyer, J. H., Roy-Burman, P., Bray, G. A., & Mack, T. M. (1993). North-American twins with IDDM: genetic, etiological and clinical significance of disease concordance according age, zygosity, and the interval after diagnosis in first twin. Diabetes, 42, 1351–1363.

    Article  Google Scholar 

  25. Olmos, P., A’Hern, R., Heaton, D. A., Millward, B. A., Risley, D., Pyke, D. A., & Leslie, R. D. (1988). The significance of the concor- dance rate for type 1 (insulin-dependent) diabetes in identical twins. Diabetologia, 31, 747–750.

    Article  Google Scholar 

  26. Hyttinen, V., Kaprio, J., Kinnunen, L., Koskenvuo, M., & Tuomilehto, J. (2003). Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs. A nationwide follow-up study. Diabetes, 52, 1052–1055.

    Article  Google Scholar 

  27. Kyvik, K. O., Green, A., & Beck-Nielsen, H. (1995). Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ, 311(7010), 913–917.

    Article  Google Scholar 

  28. Metcalfe, K. A., Hitman, G. A., Rowe, R. E., Hawa, M., Huang, X., Stewart, T., & Leslie, D. G. (2001). Concordance for type 1 diabetes in identical twins is affected by insulin genotype. Diabetes Care, 24, 838–842.

    Article  Google Scholar 

  29. Newman, B., Selby, J. V., King, M. C., Slemenda, C., Fabsitz, R., & Friedman, G. D. (1987). Concordance for type 2 (non- insulin-dependent) diabetes mellitus in male twins. Diabetologia, 30(10), 763–768.

    Article  Google Scholar 

  30. Gerich, J. E. (1998). The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocrine Reviews, 19(4), 491–450.

    Article  Google Scholar 

  31. Committee on Diabetic Twins, Japan Diabetes Society. (1988). Diabetes mellitus in twins: a cooperative study in Japan. Committee on Diabetic Twins, Japan Diabetes Society. Diabetes Research and Clinical Practice, 5(4), 271–280.

    Article  Google Scholar 

  32. Kaprio, J., Tuomilehto, J., Koskenvuo, M., Romanov, K., Reunanen, A., Eriksson, J., Stengård, J., & Kesäniemi, Y. A. (1992). Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia, 35(11), 1060–1067.

    Article  Google Scholar 

  33. Medici, F., Hawa, M., Ianari, A., Pyke, D. A., & Leslie, R. D. (1999). Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia, 42(2), 146–150.

    Article  Google Scholar 

  34. Berkovic, S. F., Howell, R. A., Hay, D. A., & Hopper, J. L. (1998). Epilepsies in twins: genetics of the major epilepsy syndromes. Annals of Neurology, 43(4), 435–445.

    Article  Google Scholar 

  35. Kjeldsen, M. J., Kyvik, K. O., Christensen, K., & Friis, M. L. (2001). Genetic and environmental factors in epilepsy: a population-based study of 11 900 Danish twin pairs. Epilepsy Research, 44, 167–178.

    Article  Google Scholar 

  36. Kjeldsen, M. J., Corey, L. A., Christensen, K., & Friis, M. L. (2003). Epileptic seizures and syndromes in twins: the importance of genetic factors. Epilepsy Research, 55(1–2), 137–146.

    Article  Google Scholar 

  37. Coreya, L. A., Pellock, J. M., Kjeldsend, M. J., & Nakken, K. O. (2011). Importance of genetic factors in the occurrence of epilepsy syndrome type: a twin study. Epilepsy Research, 97, 103–111.

    Article  Google Scholar 

  38. Eckhaus, J., Lawrence, K. M., Helbig, I., Bui, M., Vadlamudi, L., Hopper, J. L., Scheffer, I. E., & Berkovic, S. F. (2013). Genetics of febrile seizure subtypes and syndromes: a twin study. Epilepsy Research, 105(1–2), 103–109.

    Article  Google Scholar 

  39. Vadlamudi, L., Milne, R. L., Lawrence, K., Heron, S. E., Eckhaus, J., Keay, D., Connellan, M., Torn-Broers, Y., Howell, R. A., Mulley, J. C., Scheffer, I. E., Dibbens, L. M., Hopper, J. L., & Berkovic, S. F. (2014). Genetics of epilepsy. The testimony of twins in the molecular era. Neurology, 83(12), 1042–1048.

    Article  Google Scholar 

  40. Folstein, S. E., & Rutter, M. L. (1977). Infantile autism: a genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.

    Article  Google Scholar 

  41. Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., & Bohman, M. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry, 30(3), 405–416.

    Article  Google Scholar 

  42. Bailey, A., Couteur, A. L., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic disorder: evidence from a British twin study. Psychological Medicine, 25, 63–77.

    Article  Google Scholar 

  43. Ronald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: a decade of new twin studies. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(3), 255–274.

    Article  Google Scholar 

  44. Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L. A., Ozonoff, S., Lajonchere, C., Grether, J. K., & Risch, N. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102.

    Article  Google Scholar 

  45. Rosenberg, R. E., Law, J. K., Yenokyan, G., McGready, J., Kaufmann, W. E., & Law, P. A. (2009). Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Archives of Pediatrics and Adolescent Medicine, 163(10), 907–914.

    Article  Google Scholar 

  46. Ritvo, E. R., Freeman, B. J., Mason-Brothers, A., Mo, A., & Ritvo, A. M. (1985). Concordance for the syndrome of autism in 40 pairs of afflicted twins. The American Journal of Psychiatry, 142, 74–77.

    Article  Google Scholar 

  47. Bertelson, A., Harvald, B., & Hauge, M. (1977). A Danish twin study of manic-depressive disorder. The British Journal of Psychiatry, 130, 330–351.

    Article  Google Scholar 

  48. Kieseppä, T., Partonen, T., Haukka, J., Kaprio, J., & Lönnqvist, J. (2004). High concordance of bipolar I disorder in a nationwide sample of twins. The American Journal of Psychiatry, 161(10), 1814–1821.

    Article  Google Scholar 

  49. Sicherer, S. H., Furlong, T. J., Maes, H. H., Desnick, R. J., Sampson, H. A., & Gelb, B. D. (2000). Genetics of peanut allergy: a twin study. The Journal of Allergy and Clinical Immunology, 106(1/1), 53–56.

    Article  Google Scholar 

  50. Edfors-Lubs, M. L. (1971). Allergy in 7000 twin pairs. Acta Allergologica, 26(4), 249–285.

    Article  Google Scholar 

  51. Wüthrich, B., Baumann, E., Fries, R. A., & Schnyder, U. W. (1981). Total and specific IgE (RAST) in atopic twins. Clinical Allergy, 11, 147–154.

    Article  Google Scholar 

  52. David, P. S., Wong, H. J., & Spector, T. D. (2001). Concordance and interrelationship of atopic diseases and markers of allergic sensitization among adult female twins. The Journal of Allergy and Clinical Immunology, 108(6), 901–907.

    Article  Google Scholar 

  53. Koeppen-Schomerus, G., Stevenson, J., & Plomin, R. (2001). Genes and environment in asthma: a study of 4 year old twins. Archives of Disease in Childhood, 85(5), 398–400.

    Article  Google Scholar 

  54. Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., Fiske, A., & Pedersen, N. L. (2006). Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63, 168–174.

    Article  Google Scholar 

  55. Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, E., Skytthe, A., & Hemminki, K. (2000). Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. New England Journal of Medicine, 343(2), 78–85.

    Article  Google Scholar 

  56. Karvonen, M., Pitkäniemi, J., & Tuomilehto, J. (1999). The onset age of type 1 diabetes in Finnish children has become younger. The Finnish Childhood Diabetes Registry Group. Diabetes Care, 22(7), 1066–1070.

    Article  Google Scholar 

  57. Wang, W., McGreevey, W. P., Fu, C., Zhan, S., Luan, R., Chen, W., & Xu, B. (2009). Type 2 diabetes mellitus in China: a preventable economic burden. The American Journal of Managed Care, 15(9), 593–601.

    Google Scholar 

  58. Rubio-Tapia, A., Kyle, R. A., Kaplan, E. L., Johnson, D. R., Page, W., Erdtmann, F., Brantner, T. L., Kim, W. R., Phelps, T. K., Lahr, B. D., Zinsmeister, A. R., Melton III, L., & Murray, J. A. (2009). Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology, 137, 88–93.

    Article  Google Scholar 

  59. Kogan, M. D., Blumberg, S. J., Schieve, L. A., Boyle, C. A., Perrin, J. M., Ghandour, R. M., Singh, G. K., Strickland, B. B., Tre-vathan, E., & van Dyck, P. C. (2009). Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics, 124(5), 1395–1403.

    Article  Google Scholar 

  60. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal Investigators; Centers for Disease Control and Prevention (CDC). (2009). Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveillance Summaries, 58(10), 1–20.

    Google Scholar 

  61. Allergist report. Tech. rep., The American College of Allergy, Asthma and Immunology 2008. [Available at: http://www.acaai.org/press/Documents/AllergistReport08Final.pdf].

  62. Wang, J., Fan, H. C., Behr, B., & Quake, S. R. (2012). Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150, 402–412.

    Article  Google Scholar 

  63. Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S. A., Sigurdsson, A., Jonas-dottir, A., Jonasdottir, A., Wong, W. S. W., Sigurdsson, G., Walters, G. B., Steinberg, S., Helgason, H., Thorleifsson, G., Gudbjartsson, D. F., Helgason, A., Magnusson, O. T., Thorsteinsdottir, U., & Stefansson, K. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471–475.

    Article  Google Scholar 

  64. Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., Walker, M. F., Ober, G. T., Teran, N. A., Song, Y., El-Fishawy, P., Murtha, R. C., Choi, M., Overton, J. D., Bjornson, R. D., Carriero, N. J., Meyer, K. A., Bilguvar, K., Mane, S. M., Sěstan, N., Lifton, R. P., Günel, M., Roeder, K., Geschwind, D. H., Devlin, B., & State, M. W. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241.

    Article  Google Scholar 

  65. Croen, L. A., Najjar, D. V., Fireman, B., & Grether, J. K. (2007). Maternal and paternal age and risk of autism spectrum disorders. Archives of Pediatrics & Adolescent Medicine, 161, 334–340.

    Article  Google Scholar 

  66. Malaspina, D. P. (2001). Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophrenia Bulletin, 27, 379–393.

    Article  Google Scholar 

  67. Frans, E. M., Sandin, S., Reichenberg, A., Lichtenstein, P., Långström, N., & Hultman, C. M. (2008). Advancing paternal age and bipolar disorder. Archives of General Psychiatry, 65(9), 1034–1040.

    Article  Google Scholar 

  68. Menezes, P. R., Lewis, G., Rasmussen, F., Zammit, S., Sipos, A., Harrison, G. L., Tynelius, P., & Gunnell, D. (2010). Paternal and maternal ages at conception and risk of bipolar affective disorder in their offspring. Psychological Medicine, 40(3), 477–485.

    Article  Google Scholar 

  69. Zhu, J. L., Vestergaard, M., Madsen, K. M., & Olsen, J. (2008). Paternal age and mortality in children. European Journal of Epidemiology, 23(7), 443–447.

    Article  Google Scholar 

  70. Deciphering Developmental Disorders Study. (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature, 542(7642), 433–438.

    Article  Google Scholar 

  71. Harper, J. C., Coonen, E., Rycke, M. D., Harton, G., Moutou, C., Pehlivan, T., Traeger-Synodinos, J., Van Rij, M., & Goossens, V. (2010). ESHRE PGD consortium data collection X: cycles from January to December 2007 with pregnancy follow-up to October 2008. Human Reproduction, 25(11), 2685–2707.

    Article  Google Scholar 

  72. Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O., & Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 461(7262), 367–372.

    Article  Google Scholar 

  73. Chen S, Ge H, Wang X, Pan X, Yao X, Li X, et al (2013) Haplotype-assisted accurate non-invasive fetal whole genome recovery through maternal plasma sequencing. Genome Med. 5(2).

  74. Kitzman, J. O., Snyder, M. W., Ventura, M., Lewis, A. P., et al. (2012). Noninvasive whole-genome sequencing of a human fetus. Science Translational Medicine, 4(137), 137ra76.

    Article  Google Scholar 

  75. Chitty, L. S., Mason, S., Barrett, A. N., McKay, F., Lench, N., Daley, R., & Jenkins, L. A. (2015). Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenatal Diagnosis, 35(7), 656–662.

    Article  Google Scholar 

  76. Srinivasan, B. S., Evans, E. A., Flannick, J., Patterson, A. S., Chang, C. C., Pham, T., Young, S., Kaushal, A., Lee, J., Jacobson, J. L., & Patrizio, P. (2010). A universal carrier test for the long tail of Mendelian disease. Reproductive Biomedicine Online, 21(4), 537–551.

    Article  Google Scholar 

  77. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.

    Article  Google Scholar 

  78. Edwards, J. L., Schrick, F. N., McCracken, M. D., van Amstel, S. R., Hopkins, F. M., Welborn, M. G., & Davies, C. J. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. American Journal of Reproductive Immunology, 50, 113–123.

    Article  Google Scholar 

  79. Tsunoda, Y., & Kato, Y. (2002). Recent progress and problems in animal cloning. Differentiation, 69, 158–161.

    Article  Google Scholar 

  80. Mitalipov, S., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Advances in Biochemical Engineering and Biotechnology, 114, 185–199.

    Google Scholar 

  81. Meng, L., Ely, J. J., Stouffer, R. L., & Wolf, D. P. (1997). Rhesus monkeys produced by nuclear transfer. Biology of Reproduction, 57, 454–459.

    Article  Google Scholar 

  82. Mitalipov, S. M., Yeoman, R. R., Nusser, K. D., & Wolf, D. P. (2002). Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biology of Reproduction, 66, 1367–1373.

    Article  Google Scholar 

  83. Wolf, D. P., Meng, L., Ouhibi, N., & Zelinski-Wooten, M. (1999). Nuclear transfer in rhesus monkeys: practical and basic implications. Biology of Reproduction, 60, 199–204.

    Article  Google Scholar 

  84. Simerly, C., Dominko, T., Navara, C., Payne, C., Capuano, S., Gosman, G., Chong, K., Takahashi, D., Chace, C., Compton, D., Hewitson, L., & Schatten, G. (2003). Molecular correlates of primate nuclear transfer failures. Science, 300(5617), 297.

    Article  Google Scholar 

  85. Mapletoft, R. J., & Hasler, J. F. (2005). Assisted reproductive technologies in cattle: a review. Revue Scientifique et Technique (International Office of Epizootics), 24, 393–403.

    Google Scholar 

  86. Evans, M. J., Gurer, C., Loike, J. D., Wilmut, I., Schnieke, A. E., & Schon, E. A. (1999). Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nature Genetics, 23, 90–93.

    Article  Google Scholar 

  87. Schramm RD, Paprocki AM (2004) Strategies for the production of genetically identical monkeys by embryo splitting. Reproductive Biology and Endocrinology. 2(38).

  88. Dawson, L., Bateman-House, A. S., Mueller, A. D., Bok, H., Brock, D. W., Chakravarti, A., Greene, M., King, P. A., O’Brien, S. J., Sachs, D. H., Schill, K. E., Siegel, A., Solter, D., Suter, S. M., Verfaillie, C. M., Walters, L. B., Gearhart, J. D., & Faden, R. R. (2003). Safety issues in cell-based intervention trials. Fertility and Sterility, 80(5), 1077–1085.

    Article  Google Scholar 

  89. Ginis, I., & Rao, M. S. (2003). Toward cell replacement therapy: promises and caveats. Experimental Neurology, 184, 61–77.

    Article  Google Scholar 

  90. Taylor, C. J., Bolton, E. M., Pocock, S., Sharples, L. D., Pedersen, R. A., & Bradley, J. A. (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet, 366(9502), 2019–2025.

    Article  Google Scholar 

  91. Gurdon, J. B., & Colman, A. (1999). The future of cloning. Nature, 402, 743–746.

    Article  Google Scholar 

  92. Lanza, R. P., Cibelli, J. B., & West, M. D. (1999). Human therapeutic cloning. Nature Medicine, 5(9), 975–977.

    Article  Google Scholar 

  93. Stojkovic, M., Stojkovic, P., Leary, C., Hall, V. J., Armstrong, L., Herbert, M., Nesbitt, M., Lako, M., & Murdoch, A. (2005). Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reproductive Biomedicine Online, 11(2), 226–231.

    Article  Google Scholar 

  94. Pomerantz, J., & Blau, H. M. (2004). Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nature Cell Biology, 6(9), 810–816.

    Article  Google Scholar 

  95. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  Google Scholar 

  96. Zaehres, H., & Scholer, H. R. (2007). Induction of pluripotency: from mouse to human. Cell, 131(5), 834–835.

    Article  Google Scholar 

  97. Wilmut, I. (2007). The first direct reprogramming of adult human fibroblasts cell. Cell Stem Cell, 1(6), 593–594.

    Article  Google Scholar 

  98. Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., & Yamanaka, S. (2008). Generation of pluripo- tent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702.

    Article  Google Scholar 

  99. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 260–262.

    Article  Google Scholar 

  100. Gutierrez-Aranda, I., Ramos-Mejia, V., Bueno, C., Munoz-Lopez, M., Real, P. J., Mácia, A., Sanchez, L., Ligero, G., Garcia-Parez, J. L., & Menendez, P. (2010). Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells, 28(9), 1568–1570.

    Article  Google Scholar 

  101. Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–1056.

    Article  Google Scholar 

  102. Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., Downes, M., Yu, R., Stewart, R., Ren, B., Thomson, J. A., Evans, R. M., & Ecker, J. R. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73.

    Article  Google Scholar 

  103. Haller, M. J., Viener, H. L., Wasserfall, C., Brusko, T., Atkinson, M. A., & Schatz, D. A. (2008). Autologous umbilical cord blood infusion for type 1 diabetes. Experimental Hematology, 36(6), 710–715.

    Article  Google Scholar 

  104. Harris, D. T., Badowski, M., Ahmad, N., & Gaballa, M. A. (2007). The potential of cord blood stem cells for use in regenerative medicine. Expert Opinion on Biological Therapy, 7(9), 1311–1322.

    Article  Google Scholar 

  105. Noli, L., Ogilvie, C., Khalaf, Y., & Ilic, D. (2017). Potential of human twin embryos generated by embryo splitting in assisted reproduction and research. Human Reproduction Update, 23(2), 156–165.

    Google Scholar 

  106. Lewis, I. M. (1994). Splitting cattle embryos commercially. The effect of sucrose, embryo stage and the duration between embryo recovery and bisection. Theriogenology, 41(237).

  107. Hygate, L., Knee, B., Lewis, I. (1995) An embryo splitting program to improve carcass quality for the Japanese beef market. In The 11th conference of Australian Association of Animal Breeding and Genetics: Breeding for Quality and Profit. Australian Association of Animal Breeding and Genetics, Adelaide, South Australia.

  108. Johnson, W. H., Loskutoff, N. M., Plante, Y., & Betteridge, K. J. (1995). Production of four identical calves by the separation of blastomeres from an in-vitro derived four-cell embryo. The Veterinary Record, 137, 15–16.

    Article  Google Scholar 

  109. Seike, N., Sakai, M., & Kanagawa, H. (1991). Development of frozen-thawed demiembryos and production of identical twin calves of different ages. The Journal of Veterinary Medical Science, 53, 37–42.

    Article  Google Scholar 

  110. Illmensee, K., Kaskar, K., & Zavos, P. M. (2005). Efficient blastomere biopsy for mouse embryo splitting for future applications in human assisted reproduction. Reproductive Biomedicine Online, 11(6), 716–725.

    Article  Google Scholar 

  111. Mitalipov, S. M., Yeoman, R. R., Kuo, H. C., & Wolf, D. P. (2002). Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biology of Reproduction, 66, 1449–1455.

    Article  Google Scholar 

  112. Wood, C. (2001). Embryo splitting: a role in infertility? Reproduction, Fertility and Development, 13, 91–93.

    Article  Google Scholar 

  113. Machin, G. A. (1996). Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. American Journal of Medical Genetics, 61, 216–228.

    Article  Google Scholar 

  114. Noli, L., Capalbo, A., Ogilvie, C., Khalaf, Y., & Ilic, D. (2015). Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem Cell Reports, 5(6), 946–953.

    Article  Google Scholar 

  115. Bruder, C. E. G., Piotrowski, A., Gijsbers, A. A. C. J., Andersson, R., Erickson, S., de Ståhl, T. D., Menzel, U., Sandgren, J., von Tell, D., Poplawski, A., Crowley, M., Crasto, C., Partridge, E. C., Tiwari, H., Allison, D. B., Komorowski, J., van Ommen, G. J. B., Boomsma, D. I., Pedersen, N. L., den Dunnen, J. T., Wirdefeldt, K., & Dumanski, J. P. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. The American Journal of Human Genetics, 82(3), 763–771.

    Article  Google Scholar 

  116. De, S. (2011). Somatic mosaicism in healthy human tissues. Trends in Genetics, 27, 217–223.

    Article  Google Scholar 

  117. Singh, S. M., Murphy, B., & O’Reilly, R. (2002). Epigenetic contributors to the discordance of monozygotic twins. Clinical Genetics, 62, 97–103.

    Article  Google Scholar 

  118. Illmensee, K., Levanduski, M., Konialis, C., Pangalos, C., Vithoulkas, A., & Goudas, V. T. (2011). Human embryo twinning with proof of monozygocity. Middle East Fertility Society Journal, 16, 215–219.

    Article  Google Scholar 

  119. Baranzini, S. E., Mudge, J., van Velkinburgh, J. C., Khankhanian, P., Khrebtukova, I., Miller, N. A., Zhang, L., Farmer, A. D., Bell, C. J., Kim, R. W., May, G. D., Woodward, J. E., Caillier, S. J., McElroy, J. P., Gomez, R., Pando, M. J., Clendenen, L. E., Ganusova, E. E., Schilkey, F. D., Ramaraj, T., Khan, O. A., Huntley, J. J., Luo, S., Kwok, P., Wu, T. D., Schroth, G. P., Oksenberg, J. R., Hauser, S. L., & Kingsmore, S. F. (2010). Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature, 464, 1351–1356.

    Article  Google Scholar 

  120. Weber-Lehmann, J., Schilling, E., Gradl, G., Richter, D. C., Wiehler, J., & Rolf, B. (2014). Finding the needle in the haystack: Differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Science International. Genetics, 9, 42–46.

    Article  Google Scholar 

  121. Krawczak, M., & Cooper, D. N. (2012). How to distinguish genetically between an alleged father and his monozygotic twin: a thought experiment. Forensic Science International. Genetics, 6, 129–130.

    Article  Google Scholar 

  122. Yeoman, Y. Y., Gerami-Naini, B., Mitalipov, S., Nusser, K. D., Widmann-Browning, A. A., & Wolf, D. P. (2001). Cryo-loop vitrification yields superior survival of rhesus monkey blastocysts. Human Reproduction, 16, 1965–1969.

    Article  Google Scholar 

  123. Loutradi, K. E., Kolibianakis, E. M., Venetis, C. A., Papanikolaou, E. G., Pados, G., Bontis, I., & Tarlatzis, B. C. (2008). Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertility and Sterility, 90, 186–193.

    Article  Google Scholar 

  124. Rezazadeh, V. M., Eftekhari-Yazdi, P., Karimian, L., Hassani, F., & Movaghar, B. (2009). Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. Journal of Assisted Reproduction and Genetics, 26(6), 347–354.

    Article  Google Scholar 

  125. Cobo, A., Meseguer, M., Remohí, J., & Pellicer, A. (2010). Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Human Reproduction, 25(9), 2239–2246.

    Article  Google Scholar 

  126. Cobo, A., & Diaz, C. (2011). Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertility and Sterility, 96(2), 277–285.

    Article  Google Scholar 

  127. Chan, A. W. S., Dominko, T., Luetjens, C. M., Neuber, E., Martinovich, C., Hewitson, L., Simerly, C. R., & Schatten, G. P. (2000). Clonal propagation of primate offspring by embryo splitting. Science, 287(5451), 317–319.

    Article  Google Scholar 

  128. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  Google Scholar 

  129. Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., Itskovitz-Eldor, J., & Thomson, J. A. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 227(2), 271–278.

    Article  Google Scholar 

  130. Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., & Benvenisty, N. (2001). Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Current Biology, 11(7), 514–518.

    Article  Google Scholar 

  131. Odorico, J. S., Kaufman, D. S., & Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 19(3), 193–204.

    Article  Google Scholar 

  132. Illmensee, K., Kaskar, K., & Zavos, P. (2006). In vitro blastocyst development from serially split mouse embryos and future implications for human ART. Fertility and Sterility, 86, 1112–1120.

    Article  Google Scholar 

  133. Bianchi, E., & Sette, C. (2011). Post-transcriptional control of gene expression in mouse early embryo development: a view from the tip of the iceberg. Genes, 2(2), 345–359.

    Article  Google Scholar 

  134. Edwards, R. G. (2006). Genetics, epigenetics and gene silencing in differentiating mammalian embryos. Reproductive Biomedicine Online, 13(5), 732–753.

    Article  Google Scholar 

  135. Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., Wirbelauer, C., Oakeley, E. J., Gaidatzis, D., Tiwari, V. K., & Schübeler, D. (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480, 490–495.

    Google Scholar 

  136. Noli, L., Capalbo, A., Dajani, Y., Cimadomo, D., Bvumbe, J., Rienzi, L., Ubaldi, F. M., Ogilvie, C., Khalaf, Y., & Ilic, D. (2016). Human embryos created by embryo splitting secrete significantly lower levels of miRNA-30c. Stem Cells and Development, 25(24), 1853–1862.

    Article  Google Scholar 

  137. Noli, L., Dajani, Y., Capalbo, A., Bvumbe, J., Rienzi, L., Ubaldi, F. M., Ogilvie, C., Khalaf, Y., & Ilic, D. (2015). Developmental clock compromises human twin model created by embryo splitting. Human Reproduction, 30(12), 2774–2784.

    Google Scholar 

  138. Zhao, S., Zhao, X., Du, W., Hao, H., Liu, Y., Qin, T., Wang, D., & Zhu, H. (2015). Production of early monozygotic twin bovine embryos in vitro by the blastomere separation and coculture technique. Journal of Integrative Agriculture, 14(10), 2034–2041.

    Article  Google Scholar 

  139. Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P., & Liebaers, I. (2008). The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Human Reproduction, 23(8), 1742–1747.

    Article  Google Scholar 

  140. Geens, M., Mateizel, I., Sermon, K., De Rycke, M., Spits, C., Cauffman, G., Devroey, P., Tournaye, H., Liebaers, I., & Van de Velde, H. (2009). Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Human Reproduction, 24(11), 2709–2717.

    Article  Google Scholar 

  141. Illmenseea, K., Kaskar, K., & Zavosa, P. M. (2006). In-vitro developmental potential of individual mouse blastomeres cultured with and without zona pellucida: future implications for human assisted reproduction. Reproductive Biomedicine Online, 13(2), 284–294.

    Article  Google Scholar 

  142. Riggs, R., Mayer, J., Dowling-Lacey, D., Chi, T. F., Jones, E., & Oehninger, S. (2008). Does storage time influence postthaw survival and pregnancy outcome? An analysis of 11,768 cryopreserved human embryos. Fertility and Sterility, 93, 109–115.

    Article  Google Scholar 

  143. Yashina, S., Gubin, S., Maksimovich, S., Yashina, A., Gakhova, E., & Gilichinsky, D. (2012). Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. PNAS, 109(10), 4008–4013.

    Article  Google Scholar 

  144. Pikuta, E. V., Marsic, D., Bej, A., Tang, J., Krader, P., & Hoover, R. B. (2005). Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the fox tunnel in Alaska. International Journal of Systematic and Evolutionary Microbiology, 55, 473–478.

    Article  Google Scholar 

  145. Bidle, K. D., Lee, S., Marchant, D. R., & Falkowski, P. G. (2007). Fossil genes and microbes in the oldest ice on earth. PNAS, 104(33), 13455–13460.

    Article  Google Scholar 

  146. Stahl, E. A., Wegmann, D., Trynka, G., Gutierrez-Achury, J., Do, R., Voight, B. F., Kraft, P., Chen, R., Kallberg, H. J., Kurree-man, F. A. S., Replication, D. G., analysis Consortium M, Consortium MIG, Kathiresan, S., Wijmenga, C., Gregersen, P. K., Alfredsson, L., Siminovitch, K. A., Worthington, J., de Bakker, P. I. W., Raychaudhuri, S., & Plenge, R. M. (2012). Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genetics, 44(5), 483–489.

    Article  Google Scholar 

  147. Roberts NJ, Vogelstein JT, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE (2012) The predictive capacity of personal genome sequencing. Science Translational Medicine.

  148. Chuong, B. D., Hinds, D. A., Francke, U., & Eriksson, N. (2012). Comparison of family history and SNPs for predicting risk of complex disease. PLoS Genetics, 8(10), e1002973.

    Article  Google Scholar 

  149. Rzhetsky, A., Wajngurt, D., Park, N., & Zheng, T. (2007). Probing genetic overlap among complex human phenotypes. PNAS, 104(28), 11694–11699.

    Article  Google Scholar 

  150. Thomsen, S. F., van der Sluis, S., Kyvik, K. O., Skytthe, A., & Backer, V. (2010). Estimates of asthma heritability in a large twin sample. Clinical and Experimental Allergy, 40, 1054–1061.

    Article  Google Scholar 

  151. Nisticò, L., Fagnani, C., Coto, I., Percopo, S., Cotichini, R., Limongelli, M. G., Paparo, F., D’Alfonso, S., Giordano, M., Sferlazzas, C., Magazzù, G., Momigliano-Richiardi, P., Greco, L., & Stazi, M. A. (2006). Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut, 55(6), 803–808.

    Article  Google Scholar 

  152. Rees, M. I. (2010). The genetics of epilepsy—the past, the present and future. Seizure, 19(10), 680–683.

    Article  Google Scholar 

  153. Fujiwara, T., Nakamura, H., Watanabe, M., Yagi, K., Seino, M., & Nakamura, H. (1990). Clinicoelectrographic concordance between monozygotic twins with severe myoclonic epilepsy in infancy. Epilepsia, 31(3), 281–286.

    Article  Google Scholar 

  154. Vadlamudi, L., Dibbens, L. M., Lawrence, K. M., Iona, X., et al. (2010). Timing of de novo mutagenesis—a twin study of Sodium-Channel mutations. The New England Journal of Medicine, 363, 1335–1340.

    Article  Google Scholar 

  155. Epi4K Consortium and Epilepsy Phenome/Genome Project. (2013). De novo mutations in epileptic encephalopathies. Nature, 501, 217–221.

    Article  Google Scholar 

  156. Kjeldsen, M. J., Kyvik, K. O., Friis, M. L., & Christensen, K. (2002). Genetic and environmental factors in febrile seizures: a Danish population-based twin study. Epilepsy Research, 51(1–2), 167–177.

    Article  Google Scholar 

  157. Knip, M., Veijola, R., Virtanen, S. M., Hyoty, H., Vaarala, O., & Åkerblom, H. K. (2005). Environmental triggers and determinants of type 1 diabetes. Diabetes, 54(Suppl 2), S125–S136.

    Article  Google Scholar 

  158. Couper, J. J. (2001). Environmental triggers of type 1 diabetes. Journal of Paediatrics and Child Health, 37(3), 218–220.

    Article  MathSciNet  Google Scholar 

  159. Virtanen, S. M., Räsänen, L., Aro, A., Ylönen, K., Lounamaa, R., Tuomilehto, J., & Åkerblom, H. K. (1992). Feeding in infancy and the risk of type 1 diabetes mellitus in Finnish children: the childhood diabetes in Finland study group. Diabetic Medicine, 9, 815–819.

    Article  Google Scholar 

  160. Hyppönen, E., Läärä, E., Reunanen, A., Järvelin, M. R., & Virtanen, S. M. (2001). Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet, 3(358), 1500–1503.

    Article  Google Scholar 

  161. Ilonen, J., Sjöroos, M., Knip, M., Veijola, R., Simell, O., Åkerblom, H. K., Paschou, P., Bozas, E., Havarini, B., Malamitsi-Puchner, A., Thymelli, J., Vazeou, A., & Bartsocas, C. S. (2002). Estimation of genetic risk for type 1 diabetes. American Journal of Medical Genetics, 115, 30–36.

    Article  Google Scholar 

  162. Fennessy, M., Metcalfe, K., Hitman, G. A., Niven, M., Biro, P. A., Tuomilehto, J., & Tuomilehto-Wolf, E. (1994). A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population. Childhood diabetes in Finland (DiMe) study group. Diabetologia, 37(9), 937–944.

    Article  Google Scholar 

  163. Wolf, E., Tuomilehto, J., & Lounamaa, R. (1988). Can the high risk of type I diabetes in Finland be explained by familial aggregation and by HLA haplotype distribution?: Study group on childhood diabetes in Finland. Advances in Experimental Medicine and Biology, 246, 235–239.

    Article  Google Scholar 

  164. Tuomilehto-Wolf, E., & Tuomilehto, J. (1991). HLA antigenes in insulin-dependent diabetes mellitus. Annals of Medicine, 23(5), 481–488.

    Article  Google Scholar 

  165. Gloyn, A. L., Cummings, E. A., Edghill, E. L., Harries, L. W., Scott, R., Costa, T., Temple, I. K., Hattersley, A. T., & Ellard, S. (2004). Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. Journal of Clinical Endocrinology and Metabolism, 89(8), 3932–3935.

    Article  Google Scholar 

  166. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J (2000) Incidence of childhood type 1 diabetes worldwide. Diabetes Care. 23(10).

  167. Gale, E. A. M. (2002). The rise of childhood type 1 diabetes in the 20th century. Diabetes, 51(12), 3353–3361.

    Article  Google Scholar 

  168. Tuomilehto, J., Karvonen, M., Pitkäniemi, J., Virtala, E., Kohtamäki, K., Toivanen, L., & Tuomilehto-Wolf, E. (1999). The Finnish childhood type 1 diabetes registry group: record-high incidence of type 1 (insulin-dependent) diabetes mellitus in Finnish children. Diabetologia, 42, 655–660.

    Article  Google Scholar 

  169. Gyürüs, E., Györk, B., Green, A., Patterson, C., & Soltész, G. (1999). Incidence of type 1 childhood diabetes in Hungary (1978-1997). Hungarian committee on the epidemiology of childhood diabetes. Orvosi Hetilap, 140(20), 1107–1111.

    Google Scholar 

  170. Gyürüs, E., Patterson, C., & Soltész, G. (2011). Constantly rising or peaks and plateaus? Incidence of childhood type 1 diabetes in Hungary (1989-2009). Orvosi Hetilap, 152(42), 1692–1697.

    Article  Google Scholar 

  171. Martorell, R. (2005). Diabetes and Mexicans: why the two are linked. Preventing Chronic Disease, 2, A04.

    Google Scholar 

  172. Li, G., Zhang, P., Wang, J., Gregg, E. W., Yang, W., Gong, Q., Li, H., Li, H., Jiang, Y., An, Y., Shuai, Y., Zhang, B., Zhang, J., Thompson, T. J., Gerzoff, R. B., Roglic, G., Hu, Y., & Bennett, P. H. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. The Lancet, 371(9626), 1783–1789.

    Article  Google Scholar 

  173. Xu, Y., Wang, L., He, J., Bi, Y., Li, M., Wang, T., Wang, L., Jiang, Y., Dai, M., Lu, J., Xu, M., Li, Y., Hu, N., Li, J., Mi, S., Chen, C. S., Li, G., Mu, Y., Zhao, J., Kong, L., Chen, J., Lai, S., Wang, W., Zhao, W., Ning, G., et al. (2013). Prevalence and control of diabetes in Chinese adults. JAMA, 310(9), 948–959.

    Article  Google Scholar 

  174. Neville, S. E., Boye, K. S., Montgomery, W. S., Iwamoto, K., Okamura, M., & Hayes, R. P. (2009). Diabetes in Japan: a review of disease burden and approaches to treatment. Diabetes/Metabolism Research and Reviews, 25(8), 705–716.

    Article  Google Scholar 

  175. Herder, C., & Roden, M. (2011). Genetics of type 2 diabetes: Pathophysiologic and clinical relevance. European Journal of Clinical Investigation, 41(6), 679–692.

    Article  Google Scholar 

  176. Silander, K., Mohlke, K. L., Scott, L. J., Peck, E. C., Hollstein, P., Skol, A. D., Jackson, A. U., Deloukas, P., Hunt, S., Stavrides, G., Chines, P. S., Erdos, M. R., Narisu, N., Conneely, K. N., Li, C., Fingerlin, T. E., Dhanjal, S. K., Valle, T. T., Bergman, R. N., Tuomilehto, J., Watanabe, R. M., Boehnke, M., & Collins, F. S. (2004). Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes, 53, 1141–1149.

    Article  Google Scholar 

  177. Odom, D. T., Zizlsperger, N., Gordon, D. B., Bell, G. W., Rinaldi, N. J., Murray, H. L., Volkert, T. L., Schreiber, J., Rolfe, P. A., Gifford, D. K., Fraenkel, E., Bell, G. I., & Young, R. A. (2004). Control of pancreas and liver gene expression by HNF transcription factors. Science, 303, 1378–1381.

    Article  Google Scholar 

  178. Kulkarni, R. N., & Kahn, C. R. (2004). HNFs-linking the liver and pancreatic islets in diabetes. Science, 303, 1311–1312.

    Article  Google Scholar 

  179. Pontiroli, A. E., Monti, L. D., Pizzini, A., & Piatti, P. (2000). Familial clustering of arterial blood pressure, HDL choles- terol, and pro-insulin but not of insulin resistance and microalbuminuria in siblings of patients with type 2 diabetes. Diabetes Care, 23(9), 1359–1364.

    Article  Google Scholar 

  180. Stratton, M. R., & Rahma, N. (2008). The emerging landscape of breast cancer susceptibility. Nature Genetics, 40, 17–22.

    Article  Google Scholar 

  181. Peto, J., & Thomas, M. M. (2000). High constant incidence in twins and other relatives of women with breast cancer. Nature Genetics, 26, 411–414.

    Article  Google Scholar 

  182. Association AP. (2013). Diagnostic and statistical manual of mental disorders, 5th edition: DSM-5. Arlington, VA: American Psychiatric Publishing.

    Book  Google Scholar 

  183. Christensen, D. L., Baio, J., Braun, K. V., et al. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveillance Summaries, 65(3), 1–23.

    Article  Google Scholar 

  184. Buescher, A. V. S., Cidav, Z., Knapp, M., & Mandell, D. S. (2014). Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatrics, 168(8), 721–728.

    Article  Google Scholar 

  185. Nassar, N., Dixon, G., Bourke, J., Bower, C., Glasson, E., de Klerk, N., & Leonard, H. (2009). Autism spectrum disorders in young children: effect of changes in diagnostic practices. International Journal of Epidemiology, 38(5), 1245–1254.

    Article  Google Scholar 

  186. Parner, E. T., Schendel, D. E., & Thorsen, P. (2008). Autism prevalence trends over time in Denmark. Archives of Pediatrics & Adolescent Medicine, 162(12), 1150–1156.

    Article  Google Scholar 

  187. Kanner, L. (1943). Autistic disturbances of affective contact. The Nervous Child, 2, 217–250.

    Google Scholar 

  188. Kanner, L. (1949). Problems of nosology and psychodynamics in early childhood autism. The American Journal of Orthopsychiatry, 19(3), 416–426.

    Article  Google Scholar 

  189. Piven, J., Palmer, P., Jacobi, D., Childress, D., & Arndt, S. (1997). Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. The American Journal of Psychiatry, 154(2), 185–190.

    Article  Google Scholar 

  190. Hallmayer, J., Glasson, E. J., Bower, C., Petterson, B., Croen, L., Grether, J., & Risch, N. (2002). On the twin risk in autism. American Journal of Human Genetics, 4(71), 941–946.

    Article  Google Scholar 

  191. Uddin, M., Tammimies, K., Pellecchia, G., Alipanahi, B., Hu, P., Wang, Z., Pinto, D., Lau, L., Nalpathamkalam, T., Marshall, C. R., Blencowe, B. J., Frey, B. J., Merico, D., Yuen, R. K., & Scherer, S. W. (2014). Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nature Genetics, 46(7), 742–747.

    Article  Google Scholar 

  192. O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., Levy, R., Ko, A., Lee, C., Smith, J. D., Turner, E. H., Stanaway, I. B., Vernot, B., Malig, M., Baker, C., Reilly, B., Akey, J. M., Borenstein, E., Rieder, M. J., Nickerson, D. A., Bernier, R., Shendure, J., & Eichler, E. E. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485(7397), 246–250.

    Article  Google Scholar 

  193. Neale, B. M., Kou, Y., Liu, L., Máayan, A., Samocha, K. E., Sabo, A., Lin, C. F., Stevens, C., Wang, L. S., Makarov, V., Polak, P., Yoon, S., Maguire, J., Crawford, E. L., Campbell, N. G., Geller, E. T., Valladares, O., Schafer, C., Liu, H., Zhao, T., Cai, G., Lihm, J., Dannenfelser, R., Jabado, O., Peralta, Z., Nagaswamy, U., Muzny, D., Reid, J. G., Newsham, I., Wu, Y., Lewis, L., Han, Y., Voight, B. F., Lim, E., Rossin, E., Kirby, A., Flannick, J., Fromer, M., Shakir, K., Fennell, T., Garimella, K., Banks, E., Poplin, R., Gabriel, S., DePristo, M., Wimbish, J. R., Boone, B. E., Levy, S. E., Betancur, C., Sunyaev, S., Boerwinkle, E., Buxbaum, J. D., Cook, E. H., Devlin, B., Gibbs, R. A., Roeder, K., Schellenberg, G. D., Sutcliffe, J. S., & Daly, M. J. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485(7397), 242–245.

    Article  Google Scholar 

  194. Durkin, M. S., Maenner, M. J., Newschaffer, C. J., Lee, L. C., Cunniff, C. M., Daniels, J. L., Kirby, R. S., Leavitt, L., Miller, L., Zahorodny, W., & Schieve, L. A. (2008). Advanced parental age and the risk of autism spectrum disorder. American Journal of Epidemiology, 168(11), 1268–1276.

    Article  Google Scholar 

  195. Hultman, C. M., Sandin, S., Levine, S. Z., Lichtenstein, P., & Reichenberg, A. (2010). Advancing paternal age and risk of autism: New evidence from a population-based study and a meta-analysis of epidemiological studies. Molecular Psychiatry, 16, 1203–1212.

    Article  Google Scholar 

  196. Sandin, S., Schendel, D., Magnusson, P., et al. (2016). CH: Autism risk associated with parental age and with increasing difference in age between the parents. Molecular Psychiatry, 21, 693–700.

    Article  Google Scholar 

  197. Yuen, R. K. C., Thiruvahindrapuram, B., Merico, D., Walker, S., Tammimies, K., Hoang, N., Chrysler, C., et al. (2015). Whole-genome sequencing of quartet families with autism spectrum disorder. Nature Medicine, 21(2), 185–191.

    Article  Google Scholar 

  198. Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, Whitney J, Deflaux N, Bingham J, Wang Z, Pellecchia G, et al (2017) Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature Neuroscience.

  199. Swert, L. F. D. (1999). Risk factors for allergy. European Journal of Pediatrics, 158(2), 89–94.

    Article  Google Scholar 

  200. Association of American Medical Colleges (2011). Recent studies and reports on physician shortages in the US. Tech. rep., Center for Workforce Studies Association of American Medical Colleges.

  201. (2006) Forecasting allergy and immunology physician supply and demand through 2024. Tech. rep., The Center for Health Workforce Studies.

  202. Holm, N. V. (1983). A note on ascertainment probability in the Allen/Hrubec twin model. Acta Geneticae Medicae et Gemellologiae, 32, 37–47.

    Article  Google Scholar 

  203. Gottfredson LS, Deary IJ (2004) Intelligence predicts health and longevity, but why? Curr Dir in Psyc Science. 13.

  204. Deary, I. (2008). Why do intelligent people live longer? Nature, 456(13), 175–176.

    Article  Google Scholar 

  205. Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: following up the Scottish mental surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86, 130–147.

    Article  Google Scholar 

  206. McGue, M., Vaupel, J. W., Holm, N., & Harvald, B. (1993). Longevity is moderately heritable in a sample of Danish twins born 1870-1880. Journal of Gerontology, 48(6), B237–B244.

    Article  Google Scholar 

  207. Bouchard, T., Lykken, D., McGue, M., Segal, N., & Tellegen, A. (1990). Sources of human psychological differences: the Minnesota study of twins reared apart. Science, 250(4978), 223–228.

    Article  Google Scholar 

  208. Plomin, R., Pedersen, N. L., Lichtenstein, P., & McClearn, G. E. (1994). Variability and stability in cognitive abilities are largely genetic later in life. Behavior Genetics, 24(3), 207–215.

    Article  Google Scholar 

  209. Ulric, N., Gwyneth, B., Jr, T. J. B., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: knowns and unknowns. American Psychologist, 51(2), 77–101.

    Article  Google Scholar 

  210. Bouchard, T. J. (2013). The Wilson effect: the increase in heritability of IQ with age. Twin Research and Human Genetics, 16(5), 923–930.

    Article  MathSciNet  Google Scholar 

  211. Murray, C. A., Herrnstein, R. (1994). The bell curve: intelligence and class structure in American life, Free Press chap. 4:105–110.

  212. Neisser, U. (1996). Intelligence: knowns and unknowns. American Psychologist, 51(2), 77–101.

    Article  Google Scholar 

  213. Gottfredson, L. S. (1998). The general intelligence factor. Scientific American Presents, 9(4), 24–29.

    Google Scholar 

  214. Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124(2), 262–274.

    Article  Google Scholar 

  215. Burhana, N. A. S., Mohamadb, M. R., Kurniawana, Y., & Halim, A. (2014). The impact of low, average, and high IQ on economic growth and technological progress: do all individuals contribute equally? Intelligence, 46, 1–8.

    Article  Google Scholar 

  216. Bouchard, T. J. (2004). Genetic influence on human psychological traits. a survey. Current Directions in Psy- chological Science, 13(4), 148–151.

    Article  Google Scholar 

  217. Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., Ke, X., Hellard, S. L., Christoforou, A., Luciano, M., McGhee, K., Lopez, L., Gow, A. J., Corley, J., Redmond, P., Fox, H. C., Haggarty, P., Whalley, L. J., McNeill, G., God-dard, M. E., Espeseth, T., Lundervold, A. J., Reinvang, I., Pickles, A., Steen, V. M., Ollier, W., Porteous, D. J., Horan, M., Starr, J. M., Pendleton, N., Visscher, P. M., & Deary, I. J. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 996–1005.

    Article  Google Scholar 

  218. Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., et al. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. PNAS, 111(38), 13790–13794.

    Article  Google Scholar 

  219. Selzam, S., Krapohl, E., von Stumm, S., O’Reilly, P. F., Rimfeld, K., Kovas, Y., Dale, P. S., Lee, J. J., & Plomin, R. (2017). Predicting educational achievement from DNA. Molecular Psychiatry, 22, 267–272.

    Article  Google Scholar 

  220. Van Court, M., & Bean, F. (1985). Intelligence and fertility in the United States: 1912 to 1982. Intelligence, 9, 23–32.

    Article  Google Scholar 

  221. Lynn, R., & Van Court, M. (2004). New evidence of dysgenic fertility for intelligence in the United States. Intelligence, 32, 193–201.

    Article  Google Scholar 

  222. Meisenberg, G. (2010). The reproduction of intelligence. Intelligence, 38, 220–230.

    Article  Google Scholar 

  223. Dutton, E., van der Linden, D., & Lynn, R. (2016). The negative Flynn effect: a systematic literature review. Intelligence, 59, 163–169.

    Article  Google Scholar 

  224. Eysenck, H. J. (1979) The structure and measurement of intelligence. Transaction Publishers chap. 4.

  225. Kell, H. J., Lubinski, D., & Benbow, C. P. (2013). Who rises to the top? Early indicators. Psychological Science, 24(5), 648–659.

    Article  Google Scholar 

  226. Anderson, D. K., Liang, J. W., & Lord, C. (2014). Predicting young adult outcome among more and less cognitively able individuals with autism spectrum disorders. Journal of Child Psychology and Psychiatry, 55(5), 485–494.

    Article  Google Scholar 

  227. Dilworth, C. (2011). Too smart for our own good: the ecological predicament of humankind. Cambridge University Press chap. 4. p 136.

  228. The Ethics Committee of the American Society of Reproductive Medicine (ASRM). (2004). Embryo splitting for infertility treatment. Fertility and Sterility, 82, 256–257.

    Google Scholar 

  229. Prainsack, B., Hashiloni-Dolev, Y., Kasher, A., & Prainsack, J. (2010). Attitudes of social science students in Israel and Austria towards the belated twins scenario—an exploratory study. Public Understanding of Science, 19(4), 435–451.

    Article  Google Scholar 

  230. Wood, E. C., & Trounson, A. (2000). Uses of embryo duplication in humans: embryology and ethics. Human Reproduction, 15(3), 497–501.

    Article  Google Scholar 

  231. Harris, J. (1997). Goodbye Dolly? The ethics of human cloning. Journal of Medical Ethics, 23, 353–360.

    Article  Google Scholar 

  232. Kendler, K. S., Pedersen, N. L., Farahmand, B. Y., & Persson, P. G. (1996). The treated incidence of psychotic and affective illness in twins compared with population expectation: a study in the Swedish twin and psychiatric registries. Psychological Medicine, 26(6), 1135–1144.

    Article  Google Scholar 

  233. Rutter, M., & Redshaw, J. (1991). Growing up as a twin: twin-singleton differences in psychological develop- ment. Journal of Child Psychology and Psychiatry, 32(6), 885–895.

    Article  Google Scholar 

  234. Bryan, E. M. (1998). A spare or an individual? Cloning and the implications of monozygotic twinning. Human Reproduction Update, 4(6), 812–815.

    Article  MathSciNet  Google Scholar 

  235. Dancause, K. N., Yevtushok, L., Lapchenko, S., Shumlyansky, I., Shevchenko, G., Wertelecki, W., & Garruto, R. M. (2010). Chronic radiation exposure in the Rivne-Polissia region of Ukraine: implications for birth defects. American Journal of Human Biology, 22(5), 667–674.

    Article  Google Scholar 

  236. Hook, E. B. (1981). Rates of chromosomal abnormalities at different maternal ages. Obstetrics and Gynecology, 58(3), 282–285.

    Google Scholar 

  237. Hook, E. B., Cross, P. K., & Schreinemachers, D. M. (1983). Chromosomal abnormality rates at amniocentesis and in live-born infants. JAMA, 249(15), 2034–2038.

    Article  Google Scholar 

  238. Chiang, T., Schultz, R. M., & Lampson, M. A. (2012). Meiotic origins of maternal age-related aneuploidy. Biology of Reproduction, 86, 1–7.

    Article  Google Scholar 

  239. Sun, J. X., Helgason, A., Masson, G., Ebenesersdóttir, S. S., Li, H., Mallick, S., Gnerre, S., Patterson, N., Kong, A., Reich, D., & Stefansson, K. (2012). A direct characterization of human mutation based on microsatellites. Nature Genetics, 44(10), 1161–1165.

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to all the colleagues from the Beijing Institute of Genomics (BIG) for helpful discussions that substantially improved the quality of this work.

Funding

This study was supported by grant 2011Y1SA09 from the Chinese Academy of Sciences Fellowship for Young International Scientists and by grant 31150110466 from the National Natural Science Foundation of China (NSFC) to AC.

Author information

Authors and Affiliations

Authors

Contributions

AC conceived the study, performed the statistical analysis, and wrote the manuscript. LA coordinated the study, participated in the study design, and helped to draft and edit the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Alexander Churbanov or Levon Abrahamyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churbanov, A., Abrahamyan, L. Preventing Common Hereditary Disorders through Time-Separated Twinning. BioNanoSci. 8, 344–366 (2018). https://doi.org/10.1007/s12668-017-0488-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0488-x

Keywords

Navigation