BioNanoScience

, Volume 8, Issue 1, pp 1–4 | Cite as

Depolymerized Chitosan Enhances the Lysis of Staphylococcus aureus Cells by Lysostaphin

  • Sergey Kulikov
  • Evgeniya Subakaeva
  • Pavel Zelenikhin
  • Yuriy Tyurin
  • Olga Ilinskaya
Article
  • 27 Downloads

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lee, D. S., Kang, M. S., Hwang, H. J., Eom, S. H., Yang, J. Y., Lee, M. S., Lee, W. J., Jeon, Y. J., Choi, J. S., & Kim, Y. M. (2008). Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnology and Bioprocess Engineering, 13, 758–764.CrossRefGoogle Scholar
  2. 2.
    Lee, D. S., Eom, S. H., Kim, Y. M., Kim, H. S., Yin, M. J., Lee, S. H., Kim, D. H., & Je, J. Y. (2014). Antibacterial and synergic effects of gallic acid-graftedchitosan with β-lactams against methicillin-resistant Staphylococcus aureus (MRSA). Canadian Journal of Microbiology, 60, 629–638.CrossRefGoogle Scholar
  3. 3.
    Kumar, J. K. (2008). Lysostaphin: an antistaphylococcal agent. Applied Microbiology and Biotechnology, 80(4), 555–561.CrossRefGoogle Scholar
  4. 4.
    Polak, J., Della Latta, P., & Blackburn, P. (1993). In vitro activity of recombinant lysostaphin-antibiotic combinations toward methicillin-resistant Staphylococcus aureus. Diagn.Microbiol. Infectious Diseases, 17(4), 265–270.CrossRefGoogle Scholar
  5. 5.
    Climo, M. W., Patron, R. L., Goldstein, B. P., & Archer, G. L. (1998). Lysostaphin treatment of experimental methicillin-resistant Staphylococcus aureus aortic valve endocarditis. Antimicrobial Agents and Chemotherapy, 42(6), 1355–1360.Google Scholar
  6. 6.
    Kiri, N., Archer, G., & Climo, M. W. (2002). Combinations of lysostaphin with beta-lactams are synergistic against oxacillin-resistant Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 46(6), 2017–2020.CrossRefGoogle Scholar
  7. 7.
    Desbois, A. P., & Coote, P. J. (2011). Bactericidal synergy of lysostaphin in combination with antimicrobial peptides. European Journal of Clinical Microbiology & Infectious Diseases, 30(8), 1015–1021.CrossRefGoogle Scholar
  8. 8.
    Becker, S. C., Foster-Frey, J., & Donovan, D. M. (2008). The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol. Letts., 287(2), 185–191.CrossRefGoogle Scholar
  9. 9.
    Schuch, R., Lee, H. M., Schneider, B. C., Sauve, K. L., Law, C., Khan, B. K., Rotolo, J. A., Horiuchi, Y., Couto, D. E., Raz, A., Fischetti, V. A., Huang, D. B., Nowinski, R. C., & Wittekind, M. (2014). Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. The Journal of Infectious Diseases, 209(9), 1469–1478.CrossRefGoogle Scholar
  10. 10.
    Kulikov, S. N., Khairullin, R. Z., & Varlamov, V. P. (2015). Influence of polycations on antibacterial activity of lysostaphin. Applied Biochemistry and Microbiology (Moscow), 51(6), 683–687.CrossRefGoogle Scholar
  11. 11.
    Kulikov, S., Tikhonov, V., Blagodatskikh, I., Bezrodnykh, E., Lopatin, S., Khairullin, R., Philippova, Y., & Abramchuk, S. (2012). Molecular weight and pH aspects of efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydrate Polymers, 87, 545–550.CrossRefGoogle Scholar
  12. 12.
    Wang, W., Bo, S. Q., Li, S. Q., & Qin, W. (1991). Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. International Journal of Biological Macromolecules, 13(5), 281–285.CrossRefGoogle Scholar
  13. 13.
    Hirai, A., Odani, H., & Nakajima, A. (1991). Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polymer Bulletin, 26, 87–94.CrossRefGoogle Scholar
  14. 14.
    Kumar, A. B. V., Varadaraj, M. C., Gowda, L. R., & Tharanathan, R. N. (2005). Characterization of chitooligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. The Biochemical Journal, 391, 167–175.CrossRefGoogle Scholar
  15. 15.
    Bierbaum, G., & Sahl, H. G. (1987). Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoil-L-alanine amidase. Journal of Bacteriology, 169, 5452–5458.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Sergey Kulikov
    • 1
    • 2
    • 3
  • Evgeniya Subakaeva
    • 1
  • Pavel Zelenikhin
    • 1
  • Yuriy Tyurin
    • 1
    • 4
  • Olga Ilinskaya
    • 1
  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Kazan Scientific Research Institute of Epidemiology and MicrobiologyKazanRussia
  3. 3.Kazan National Research Technological UniversityKazanRussia
  4. 4.Kazan State Medical UniversityKazanRussia

Personalised recommendations