Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 254–263 | Cite as

Green Synthesis of Silver Nanoparticles and their Antifungal Properties

  • Parteek Prasher
  • Manjeet Singh
  • Harish Mudila
Article

Abstract

In this communication, the green synthesis of silver nanoparticles (AgNPs) and their antifungal applications have been reported. The starch-stabilized AgNPs tested on the fungal strain BWP17 of the Candida species were found to have a significant antifungal property with minimum inhibitory concentration (at 80% fungal inhibition, MIC80) of 0.28 mg/ml. The fungicidal property of the nanoparticles was supported by various in vitro staining assays. The modes of inhibition were deciphered by testing the nanoparticles for R6G influx-efflux assay as well as GCMS analysis. Lastly, cell viability assay for determining the toxicity profile of these nanoparticles was performed by using MTT assay kit. It was eventually concluded that the antifungal properties of the starch-stabilized AgNPs are based on cell membrane rupturing mechanism.

Graphical Abstract

Keywords

Silver nanoparticles Green synthesis Fungicidal Influx-efflux Starch MTT assay 

Notes

Acknowledgements

The authors have no conflict of interest. PP, MS, and HM are grateful to the R and D department of University of Petroleum and Energy Studies for providing the necessary infrastructure. Department of Applied Sciences, GB Pant University is duly acknowledged for providing the resources and expertise in performing the biological studies.

References

  1. 1.
    Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Molecules, 20, 8856–8874.CrossRefGoogle Scholar
  2. 2.
    Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine., 3, 95–101.  https://doi.org/10.1016/j.nano.2006.12.001.CrossRefGoogle Scholar
  3. 3.
    Nadworny, P. L., Wang, J. F., Tredget, E. E., & Burrell, R. E. (2008). Anti-inflammatory activity of nano-crystalline silver in a porcine contact dermatitis model. Nanomedicine: Nanotechnology, Biology and Medicine., 4, 241–251.  https://doi.org/10.1186/1476-9255-7-13.CrossRefGoogle Scholar
  4. 4.
    Wong, K. K., Cheung, S. O., Huang, L., Niu, J., Tao, C., Ho, C. M., Che, C. M., & Tam, P. K. (2009). Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem. Med. Chem., 4, 1129–1135.  https://doi.org/10.1002/cmdc.200900049.CrossRefGoogle Scholar
  5. 5.
    Lin, J., Huang, Z., Wu, H., Zhou, W., Jin, P., Wei, P., Zhang, Y., Zheng, F., Xu, J., Hu, Y., Wang, Y., Li, Y., Gu, N., & Wen, L. (2014). Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy, 10, 2006–2020.  https://doi.org/10.4161/auto.36293.CrossRefGoogle Scholar
  6. 6.
    Asha Rani, P. V., Hande, M. P., & Valiyaveettil, S. (2009). Antiproliferative activity of silver nanoparticles. BMC Cell Biology., 10, 65–72.  https://doi.org/10.1186/1471-2121-10-65.CrossRefGoogle Scholar
  7. 7.
    Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., & Xing, M. M. Q. (2014). Nanosilver particles in medical applications: synthesis, performance and toxicity. International Journal of Nanomedicine, 9, 2399–2407.  https://doi.org/10.2147/IJN.S55015.Google Scholar
  8. 8.
    Salata, O. V. (2004). Application of nanoparticles in biology and medicine. J. Nanobiotechnology., 2, 435–440.  https://doi.org/10.1186/1477-3155-2-3.CrossRefGoogle Scholar
  9. 9.
    Uchihara, T. (2007). Silver diagnosis in neuropathology: principles, practice and revised interpretation. Acta Neuropathologica, 113, 483–499.  https://doi.org/10.1007/s00401-007-0200-2.CrossRefGoogle Scholar
  10. 10.
    Lallana, E., Herves, A. S., Trillo, F. F., Riguera, R., & Megia, E. F. (2012). Click chemistry for drug delivery. Nanosystems, Pharm. Res., 29, 1–34.  https://doi.org/10.1007/s11095-011-0568-5.CrossRefGoogle Scholar
  11. 11.
    Chen, Y., Chen, H., & Shi, J. (2014). Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Molecular Pharmaceutics, 11, 2495–2510.  https://doi.org/10.1021/mp400596v.CrossRefGoogle Scholar
  12. 12.
    Ahamed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta, 411, 1841–1848.  https://doi.org/10.1016/j.cca.2010.08.016.CrossRefGoogle Scholar
  13. 13.
    Nowack, B., Krug, H. F., & Height, M. (2011). 120 years of nano-silver history: implications for policy makers. Environ. Sci. and Tech., 45, 1177–1183.  https://doi.org/10.1021/es103316q.CrossRefGoogle Scholar
  14. 14.
    Lem, K. W., Choudhury, A., Lakhani, A. A., Kuyate, P., Haw, J. R., Lee, D. S., Iqbal, Z., & Brumlik, C. J. (2012). Use of nanosilver in consumer products. Recent Patents Nanotechnol, 6, 60–72.  https://doi.org/10.2174/187221012798109318.CrossRefGoogle Scholar
  15. 15.
    Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D. S., & Autrup, H. (2011). Toxicity of silver nanoparticles-nanoparticle or silver ion? Toxicology Letters, 208, 286–292.  https://doi.org/10.1016/j.toxlet.2011.11.00.CrossRefGoogle Scholar
  16. 16.
    Cao, H. (2017). Silver nanoparticles for antibacterial devices: biocompatibility and toxicity. CRC Press. ISBN 1315353474, 9781315353470.Google Scholar
  17. 17.
    Elgorban, A. M., Yassin, M. A., Syed, S. R., Adil, S. F., & Ehlindi, K. M. (2016). Antifungal silver nanoparticles: synthesis, characterisation and biological evaluation. Biotechnology and Biotechnological Equipment, 30, 56–62.  https://doi.org/10.1080/13102818.2015.1106339.CrossRefGoogle Scholar
  18. 18.
    Rai, M., Kon, K. (2015). Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases, Academic Press. ISBN 0128014717, 9780128014714.Google Scholar
  19. 19.
    Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. International Nano. Letters., 2, 32–42.  https://doi.org/10.1186/2228-5326-2-32.CrossRefGoogle Scholar
  20. 20.
    Ebrahiminezhad, A., Taghizadeh, S., Berenjian, A., Naeini, F. H., & Ghasemi, Y. (2017). Green synthesis of silver nanoparticles capped with natural carbohydrates using Ephedra intermedia. Nanoscience and Nanotechnology-Asia., 7, 104–112.  https://doi.org/10.2174/2210681206666161006165643.CrossRefGoogle Scholar
  21. 21.
    Ahmadpour, A., Tanhaei, B., Bamoharram, F. F., Ayati, A., & Sillanpaa, M. (2012). Green, rapid and facile HPMo-assisted synthesis of silver nanoparticles. Current Nanoscience., 8, 880–884.  https://doi.org/10.2174/157341312803988953.CrossRefGoogle Scholar
  22. 22.
    Mohamedin, N., El-Nagar, E.-A., Hamza, S. S., & Sherief, A. A. (2015). Green synthesis, characterization and antimicrobial activities of silver nanoparticles by Streptomyces viridodiastaticus SSHH-1 as a living. Current Nanoscience., 11, 640–654.  https://doi.org/10.2174/1573413711666150309233939.CrossRefGoogle Scholar
  23. 23.
    Sondi, I., Goia, D. V., & Matijevic, E. J. (2003). Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. Journal of Colloid and Interface Science, 260, 75–81.  https://doi.org/10.1016/S0021-9797(02)00205-9.CrossRefGoogle Scholar
  24. 24.
    Gutie’rrez, M., & Henglein, A. (1993). Formation of colloidal silver by “push-pull” reduction of silver(1+). The Journal of Physical Chemistry, 97, 11368–11370.  https://doi.org/10.1021/j100146a003.CrossRefGoogle Scholar
  25. 25.
    Ershov, B. G., Janata, E., & Henglein, A. (1993). Growth of silver particles in aqueous solution: long-lived “magic” clusters and ionic strength effects. The Journal of Physical Chemistry, 97, 339–343.  https://doi.org/10.1021/j100104a013.CrossRefGoogle Scholar
  26. 26.
    Shirtcliffe, N., Nickel, U., & Schneider, S. (1999). Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles. Journal of Colloid and Interface Science, 211, 122–129.  https://doi.org/10.1006/jcis.1998.5980.CrossRefGoogle Scholar
  27. 27.
    Schneider, S., Halbig, P., Grau, H., & Nickel, U. (1994). Reproducible preparation of silver sols with uniform particle size for application in surface enhanced Raman spectroscopy. Photochemistry and Photobiology, 60, 605–610.  https://doi.org/10.1111/j.1751-1097.1994.tb05156.CrossRefGoogle Scholar
  28. 28.
    Borah, D., & Yadav, A. K. (2015). A novel “green” synthesis of antimicrobial silver nanoparticles (AgNPs) by using Garcinia Morella (Gaertn) Desr. fruit extract. Nanoscience and Nanotechnology-Asia, 5, 25–31.  https://doi.org/10.2174/2210681205666150601215303.CrossRefGoogle Scholar
  29. 29.
    Ullman, A. (1996). Formation and structure of self-assembled monolayers. Chemical Reviews, 96, 1533–1554.  https://doi.org/10.1021/cr9502357.CrossRefGoogle Scholar
  30. 30.
    Petit, C., Lixon, P., & Pileni, M. (1993). In situ synthesis of silver nanocluster in AOT reverse micelle. The Journal of Physical Chemistry. B, 97, 12974–12983.  https://doi.org/10.1021/j100151a054.CrossRefGoogle Scholar
  31. 31.
    Suslick, K. S., Fang, M., & Hyeon, T. (1996). Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 118, 11960–11961.  https://doi.org/10.1021/ja961807n.CrossRefGoogle Scholar
  32. 32.
    Tao, A., Sinsermsuksaku, P., & Yang, P. (2006). Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie, International Edition, 45, 4597–4601.  https://doi.org/10.1002/anie.200601277.CrossRefGoogle Scholar
  33. 33.
    Wiley, B., Sun, Y., Mayers, B., & Xi, Y. (2005). Shape-controlled synthesis of metal nanostructures: the case of silver. J Chem-Eur., 11, 454–463.  https://doi.org/10.1002/chem.200400927.CrossRefGoogle Scholar
  34. 34.
    Sarkar, A., Kapoor, S., & Mukherjee, T. (2005). Preparation, characterization, and surface modification of silver nanoparticles in formamide. The Journal of Physical Chemistry, 109, 7698–7704.  https://doi.org/10.1021/jp044201r.CrossRefGoogle Scholar
  35. 35.
    Chen, W., Cai, W., Zhang, L., Wang, G., & Zhang, L. J. (2001). Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. Colloid Interface Sci., 238, 291–295.  https://doi.org/10.1006/jcis.2001.7525.CrossRefGoogle Scholar
  36. 36.
    Maesaki, S., Marichal, P., Vanden Bossche, H., Sanglard, D., & Kohno, S. (1999). Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. The Journal of Antimicrobial Chemotherapy, 44, 27–31.CrossRefGoogle Scholar
  37. 37.
    Maurya, I. K., Thota, C. K., Verma, S. D., Sharma, J., Rawal, M. K., Ravikumar, B., Sen, S., Chauhan, N., Lynn, A. M., Chauhan, V. S., & Prasad, R. (2013). Rationally designed transmembrane peptide mimics of the multidrug transporter protein Cdr1 act as antagonists to selectively block drug efflux and chemosensitize azole-resistant clinical isolates of Candida albicans. The Journal of Biological Chemistry, 288, 16775–16787.  https://doi.org/10.1074/jbc.M113.467159.CrossRefGoogle Scholar
  38. 38.
    Victoria, G. S., Yadav, B., Hauhnar, L., Jain, P., Bhatnagar, S., & Komath, S. S. (2012). Mutual co-regulation between GPI-N-acetylglucosaminyl transferase and ergosterol biosynthesis in Candida albicans. The Biochemical Journal, 3, 619–625.  https://doi.org/10.1042/BJ20120143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Petroleum and Energy StudiesDehradunIndia
  2. 2.Department of Applied ChemistryG.B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations