, Volume 8, Issue 1, pp 441–445 | Cite as

Cellular Microvesicles in the Blood of Patients with Systemic Lupus Erythematosus

  • Tatiana A. Nevzorova
  • Natalia G. Evtugina
  • Rustem I. Litvinov


Systemic lupus erythematosus (SLE) is an autoimmune disease with a complex and largely unclear pathogenesis. Cellular phospholipid microvesicles released upon activation and/or death of a cell have been proposed to play a role in inflammatory autoimmune pathologies, including SLE. Here, circulating microvesicles of various cellular origins were marked with fluorescently labeled cell-specific antibodies and enumerated by flow cytometry in platelet-free plasma obtained from the heparinized blood of 29 SLE patients and 19 normal subjects. Significantly higher concentrations of endothelial-, monocyte-, and erythrocyte-derived microvesicles were found in the SLE patients compared to normal subjects with prevalence of microvesicles originating from endothelial cells. No significant difference was found for platelet-derived microvesicles. A correlation analysis of microvesicle counts with laboratory parameters and clinical features of SLE suggest differential implications of various cell-derived microvesicles in the pathogenesis of SLE. These data suggest that SLE is associated with functional alterations of endotheliocytes, monocytes, and erythrocytes followed by enhanced release of microvesicles that may contribute to inflammation and hypercoagulability.


Microvesicles Systemic lupus erythematosus Flow cytometry 



This work was supported by the Program for Competitive Growth at Kazan Federal University. The authors thank T. B. Sibgatullin (Hospital of the Kazan Federal University) and A. N. Maksudova (Republican Clinical Hospital, Kazan) for providing clinical characteristics of the SLE patients.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with Ethical Standards

The study was approved by the Ethical Committee of Kazan State Medical Academy (Kazan, Russian Federation) and performed in accordance with the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ponomareva, A. A., Nevzorova, T. A., Mordakhanova, E. R., Andrianova, I. A., Rauova, L., Litvinov, R. I., & Weisel, J. W. (2017). Intracellular origin and ultrastructure of platelet-derived microparticles. Journal of Thrombosis and Haemostasis, 15, 1655–1667.CrossRefGoogle Scholar
  2. 2.
    Iraci, N., Leonardi, T., Gessler, F., Vega, B., & Pluchino, S. (2016). Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. International Journal of Molecular Sciences, 17, 171.CrossRefGoogle Scholar
  3. 3.
    Zubairova, L. D., Nabiullina, R. M., Nagaswami, C., Zuev, Y. F., Mustafin, I. G., Litvinov, R. I., & Weisel, J. W. (2015). Circulating microparticles alter formation, structure, and properties of fibrin clots. Scientific Reports, 5, 17611.CrossRefGoogle Scholar
  4. 4.
    van der Pol, E., Böing, A. N., Harrison, P., Sturk, A., & Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews, 64, 676–705.CrossRefGoogle Scholar
  5. 5.
    Simak, J., & Gelderman, M. P. (2006). Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfusion Medicine Reviews, 20, 1–26.CrossRefGoogle Scholar
  6. 6.
    Borba, H. H., Funke, A., Wiens, A., Utiyama, S. R., Perlin, C. M., & Pontarolo, R. (2016). Update on biologic therapies for systemic lupus erythematosus. Current Rheumatology Reports, 18, 44.CrossRefGoogle Scholar
  7. 7.
    Moulton, V. R., Suarez-Fueyo, A., Meidan, E., Li, H., Mizui, M., & Tsokos, G. C. (2017). Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends in Molecular Medicine, 23, 615–635.CrossRefGoogle Scholar
  8. 8.
    Sellam, J., Proulle, V., Jungel, A., Ittah, M., Miceli Richard, C., Gottenberg, J. E., Toti, F., Benessiano, J., Gay, S., Freyssinet, J. M., & Mariette, X. (2009). Increased levels of circulating microparticles in primary Sjorgren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Research & Therapy, 11, R156.CrossRefGoogle Scholar
  9. 9.
    Nielsen, C. T., Ostergaard, O., Johnsen, C., Jacobsen, S., & Heegaard, N. H. (2011). Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis and Rheumatism, 63, 3067–3077.CrossRefGoogle Scholar
  10. 10.
    Iversen, L. V., Ostergaard, O., Nielsen, C. T., Jacobsen, S., & Heegaard, N. H. (2013). A heparin-based method for flow cytometric analysis of microparticles directly from platelet-poor plasma in calcium containing buffer. Journal of Immunological Methods, 388, 49–59.CrossRefGoogle Scholar
  11. 11.
    Gray, W. D., Mitchell, A. J., & Searles, C. D. (2015). An accurate, precise method for general labeling of extracellular vesicles. MethodsX, 2, 360–367.CrossRefGoogle Scholar
  12. 12.
    Poncelet, P., Robert, S., Bailly, N., Garnache-Ottou, F., Bouriche, T., Devalet, B., Segatchian, J. H., Saas, P., & Mullier, F. (2015). Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfusion and Apheresis Science, 53, 110–126.CrossRefGoogle Scholar
  13. 13.
    Mobarrez, F., Vikerfors, A., Gustafsson, J. T., Gunnarsson, I., Zickert, A., Larsson, A., Pisetsky, D. S., Wallén, H., & Svenungsson, E. (2016). Microparticles in the blood of patients with systemic lupus erythematosus (SLE): phenotypic characterization and clinical associations. Scientific Reports, 6, 36025.CrossRefGoogle Scholar
  14. 14.
    Nielsen, C. T. (2012). Circulating microparticles in systemic lupus erythematosus. Danish Medical Journal, 59, B4548.Google Scholar
  15. 15.
    Ayers, L., Kohler, M., Harrison, P., Sargent, I., Dragovic, R., Schaap, M., Nieuwland, R., Brooks, S. A., & Ferry, B. (2011). Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thrombosis Research, 127, 370–377.CrossRefGoogle Scholar
  16. 16.
    Dieker, J., Tel, J., Pieterse, E., Thielen, A., Rother, N., Bakker, M., Fransen, J., Dijkman, H. B., Berden, J. H., de Vries, J. M., Hilbrands, L. B., & van der Vlag, J. (2016). Circulating apoptotic microparticles in systemic lupus erythematosus patients drive the activation of dendritic cell subsets and prime neutrophils for NETosis. Arthritis & Rhematology, 68, 462–472.CrossRefGoogle Scholar
  17. 17.
    Niccolai, E., Emmi, G., Squatrito, D., Silvestri, E., Emmi, L., Amedei, A., & Prisco, D. (2015). Microparticles: bridging the gap between autoimmunity and thrombosis. Seminars in Thrombosis and Hemostasis, 41, 413–422.CrossRefGoogle Scholar
  18. 18.
    Litvinov, R. I., & Weisel, J. W. (2017). Role of red blood cells in haemostasis and thrombosis. ISBT Science Series, 12, 176–183.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Tatiana A. Nevzorova
    • 1
  • Natalia G. Evtugina
    • 1
  • Rustem I. Litvinov
    • 1
  1. 1.Institute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussian Federation

Personalised recommendations