, Volume 8, Issue 1, pp 423–427 | Cite as

Modeling the Co2+ Binding to Amyloid Peptide Aβ13–23 in Water Environment by NMR Spectroscopy

  • Rustam Abdrakhmanov
  • Dmitriy Blokhin
  • Konstantin Usachev
  • Vladimir Klochkov


Alzheimer’s disease is a fatal neurodegenerative disorder involving the abnormal accumulation and deposition of peptides (amyloid-β, Aβ) derived from the amyloid precursor protein. Various factors that cause pathology data are revealed, but, at the moment, there is no clear understanding of the processes of plaque formation. This is interesting and actual problem because metals such as zinc, manganese, and others induce Aβ aggregation and fibril formation at high metal concentrations, while low concentration metal ions selectively destabilize the Aβ oligomeric species. In present paper, we report a structural studies of the Co2+ ion binding sites of Aβ fragments in water environment by 1D (1H) and 2D (1H-1H) NMR spectroscopy. According to the observed changes in the NMR spectra that were determined, the cobalt binding center of the Aβ13–23 peptide is associated with the aspartate and glutamine residues. Structural model of cobalt associated with Aβ peptide was obtained.


Amyloid peptide Aβ13-23 NMR Model peptide Neurodegeneration Structure Alzheimer’s disease 


Funding Information

Financial support was from the Russian Government to support the Program of Competitive Growth of Kazan Federal University among the World’s Leading Academic Centers. This work was also funded by the subsidy allocated to the Kazan Federal University for the project part of the state assignment in the sphere of scientific activities (Center of Shared Facilities).

Supplementary material

12668_2017_475_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)


  1. 1.
    Kozlowski, H., Potocki, S., Remelli, M., Rowinska-Zyrek, M., & Valensin, D. (2013). Coordination Chemistry Reviews, 257(19–20), 2625–2638.Google Scholar
  2. 2.
    Abdrakhanov, R. J., Blokhin, D. S., Usachev, K. S., Karataeva, F. K., & Klochkov, V. V. N. M. R. (2016). Studies of the Mn2+ interactions with amyloid peptide Aβ13-23 in water environment. Journal of Bionanoscience.
  3. 3.
    Markesbery, W. R., Ehmann, W. D., Alauddin, M., & Hossain, T. I. (1984). Neurobiology of Aging, 5, 19–28.CrossRefGoogle Scholar
  4. 4.
    Yamada, M., Ohno, S., Okayasu, I., Okeda, R., Hatakeyama, S., Watanabe, H., Ushio, K., & Tsukagoshi, H. (1986). Acta Neuropathologica, 70, 273–278.CrossRefGoogle Scholar
  5. 5.
    Yamagata, N., Murata, S., & Torii, T. (1962). Journal of Radiation Research, 3, 4–8.CrossRefGoogle Scholar
  6. 6.
    Religa, D., Strozik, D., Cherny, R. A., Volitakis, I., Haroutunian, V., Winblad, B., Naslund, J., & Bush, A. I. (2006). Neurobiology, 67, 69.Google Scholar
  7. 7.
    Raman, B., Ban, T., Yamaguchi, K., Sakai, M., Kawai, T., Naiki, H., & Goto, Y. (2005). The Journal of Biological Chemistry, 280, 16157.CrossRefGoogle Scholar
  8. 8.
    Garai, K., Sengupta, P., Sahoo, B., & Maiti, S. (2006). Biochemical and Biophysical Research Communications, 345, 210.CrossRefGoogle Scholar
  9. 9.
    Usachev, K. S., Filippov, A. V., Filippova, E. A., Antzutkin, O. N., & Klochkov, V. V. (2013). Journal of Molecular Structure, 1049, 436–440. Scholar
  10. 10.
    Berger, S., & Braun, S. (2004). 200 and more NMR experiments. Weinheim: Wiley-VCH.Google Scholar
  11. 11.
    Schwieters, C. D., Kuszewski, J. J., Tjandra, N., & Clore, G. M. (2003). Journal of Magnetic Resonance, 160, 65.CrossRefGoogle Scholar
  12. 12.
    Lee, W., Tonelli, M., & Markley J. L. (2015). Bioinformatics, 31(8), 1325–1327.Google Scholar
  13. 13.
    Wuthrich, K. (1986). NMR of proteins and nucleic acids. New York: Wiley-VCH.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Rustam Abdrakhmanov
    • 1
  • Dmitriy Blokhin
    • 1
  • Konstantin Usachev
    • 1
  • Vladimir Klochkov
    • 1
  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations