, Volume 8, Issue 1, pp 237–248 | Cite as

Design of Dual Band Wireless Power and Data Through RF Transmission for Biomedical Implants

  • Dhoha Daoud
  • Maissa Daoud
  • Mohamed Ghorbel
  • Ahmed Ben Hamida


In this paper, a new data and power recovery architecture for biomedical microsystem implants is proposed. Our contribution aims to overcome problems resulted by the trade-off between transmission data rate and power consumption for systems using the same or the separate inductive link to transmit data and power to the implanted part. The dual separate channels of RF powering and data recovery parts are designed to achieve the back telemetry data and power supply. The RF power recovery system is based on a 4-MHz RF link signal. It provides a regulated 3.3 V for the stimulating stage and 0.9 V for data recovery stage. The receiver based on a non-coherent topology consists of a 3–5-GHz low-noise amplifier (LNA), a squarer, an integrator, and a high-speed decision stage. The LNA of cascaded by cascode inductive source degenerative approach is proposed to decrease the noise figure when respecting linearity and stability conditions. It dissipates 8.89 mA from the 0.9-V power supply. The pulse generator produces an output signal with a maximum power spectral density (PSD) of − 66 dBm/MHz. The power consumption of the data transmission system is approximately equal to 0.664 mW for the emitter and 9.17 mW for the receiver. Simulation results show that this configuration can achieve a 125-Mbps data rate and − 82 dBm at 125-Mbps receiving sensitivity. This topology was designed in 0.18-μm RF-CMOS technology.


Full-wave rectifier Voltage regulator Energy detector Biomedical implant RF link 


  1. 1.
    Daoud, D., Ghorbel, M., Ben Hamida, A. A wireless data and power recovery for biomedical Microsystems implants, International Conference on Microelectronics ICM’11 Hammamet, Tunisie.Google Scholar
  2. 2.
    Karami, M. A., & Daniel, J. I. (2012). Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters, 0003-6951/2012/100(4)/042901/4/$30.00. Applied. Physics Letter.
  3. 3.
    Fayad, J., Otto, S., Shannon, R., & Brackmann, D. (2008). Cochlear and brainstem auditory prostheses, neural interface for hearing restoration: cochlear and brain stem implants. Proceedings of the IEEE, 96(7), 1085–1095.CrossRefGoogle Scholar
  4. 4.
    Weiland, J., & Humayun, M. (2008). Visual prosthesis. Proceedings of the IEEE, 96(7), 1076–1084.CrossRefGoogle Scholar
  5. 5.
    BWF «Guidelines for the use of Wireless Power Transmission/Technologies, Edition 2.0», avril 2013.
  6. 6.
    Daoud, D., Ghorbel, M., Ben Hamida, A. (2011). Fully integrated CMOS data and clock recovery for wireless biomedical implants, international multi-conference on systems, Signals & Devices SSD’11, Sousse.Google Scholar
  7. 7.
    Mirbach, M., Lin, D., Thiasiriphet, T., Lindner, J., Menzel, W., Schumacher, H., Leib, M., & Schleicher, B. (2013). UWB in medicine—high performance UWB systems for biomedical diagnostics and short range communications. Rijeka: InTech.Google Scholar
  8. 8.
    Barraj, I., Trabelsi, H., Rahajandraibe, W., & Masmoudi, M. (2015). An energy-efficient tunable CMOS UWB pulse generator. BioNanoScience, 5(2), 117–122.CrossRefGoogle Scholar
  9. 9.
    Olivo, J., Ghoreishizadeh, S. S., Carrara, S., De Micheli, G. (2013). Electronic implants: Power delivery and management, Design, Automation & Test in Europe Conference &Exhibition, pp.1540–1545.Google Scholar
  10. 10.
    Daoud, D., Ghorbel, M., Ben Hamida, A. (2014). Model of a Short Range Non-Coherent IR-UWB Transceiver, 1st International Conference on Advanced Technologies for Signal and Image Processing – ATSIP’2014 Sousse, Tunisie.Google Scholar
  11. 11.
    Ben Hmida, G., Ghariani, H and Samet, M. (2007). Analytical Design Equations and Analysis of Class-E Power Amplifiers for Transcutaneous Energy Transfer System. 4th International MultiConference on Systems, Signals & Devices, Tunisia.Google Scholar
  12. 12.
    Mounaïmand, F., Sawan, M. (2012) Toward a fully integrated neurostimulator with inductive power recovery front-end. IEEE Transactions on Biomedical Circuits and Systems, 6(4).Google Scholar
  13. 13.
    Bastianini, S., Crepaldi, M., Demarchi, D., Gabrielli, A., Lolli, M., Margotti, A., Villani, G., Zhang, Z., & Zoccoli, G. (2013). A 0.18 μm CMOS low-power radiation sensor for asynchronous event-driven UWB wireless transmission. Nuclear Instruments and Methods in Physics Research A, 730, 105–110.CrossRefGoogle Scholar
  14. 14.
    F. Inanlouand, M. Ghovanloo. (2011). Wideband near-field data transmission using pulse harmonic modulation. IEEE Transactions on Circuits and Systems, 58(1).Google Scholar
  15. 15.
    Chen, J.D. (2013) A low-power ultrawideband low-noise amplifier in0.18 휇m CMOS technology, Hindawi Publishing Corporation. Active and Passive Electronic Components, 2013. 10 pages.
  16. 16.
    Gonzalez, G. (1997). Microwave transistor amplifiers: analysis and design (2nd ed.). Upper Saddle River: Prentice-Hall.Google Scholar
  17. 17.
    Lee, J. Y., Ham, J. H., Lee, Y. S., & Yun, T. Y. (2010). CMOS LNA for full-band ultra-wideband systems using a simple wide input matching network. IET Microwaves, Antennas & Propagation, 4(12), 2155–2159.CrossRefGoogle Scholar
  18. 18.
    Nhan, N., Nghia, D., & Anh, D. (2012). A 0.13μm CMOS low-noise amplifier using resistive feedback current reuse technique for 3.1-10.6 GHz ultra-wideband receivers. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 3, 235–238.Google Scholar
  19. 19.
    Jaemin, S., Taejun, Y., & Jichai, J. (2013). Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics Journal, 44, 821–826.CrossRefGoogle Scholar
  20. 20.
    Alavi-Rad, H., Ziabakhsh, S., & Yagoub, M. (2013). A 0.9V CMOS 3-5 Ghz broadband flat gain low-noise amplifier for ultra-wide band receivers. CJECE, 36(2), 87–91.Google Scholar
  21. 21.
    Gautam, N., Kumar, M., Chaturvedi, A. (2014). A 3.1–10.6 GHz CMOS two stage cascade topology low-noise amplifier for UWB system. Fourth International Conference on Communication Systems and Network Technologies (CSNT), Bhopal. IEEE. 1070–1073.Google Scholar
  22. 22.
    Saha, P. K., Sasaki, N., & Kikkawa, T. (2005). Impulse-based UWB transmitter in 0.18um CMOS for wireless interconnect in future ULSI, Ext. Abst. Of the forth Hiroshima international workshop on Nanoelectronics for Tera-bit information processing (pp. 76–77). Higashihiroshima: Hiroshima University.Google Scholar
  23. 23.
    Gao, Y., Zheng, Y., Diao, S., Toh, W.D., Ang, C.W., Je, M., Heng, C.H. (2011). Low-power ultrawideband wireless telemetry transceiver for medical sensor applications. IEEE Transactions On Biomedical Engineering, 58(3).Google Scholar
  24. 24.
    S. Pourbagheri, K. Mayaram, T. Fiez. (2013). A noise-reducing 0.48 nJ/bit interference-robust non-coherent energy detection IR-UWB receiver for wireless sensor networks. IEEE. 978-1-4673-2141-9/13/$31.00 ©2013.Google Scholar
  25. 25.
    Zheng, Y., Zhu, Y., Ang, C.W., Gao, Y., Heng, C.H. (2014). A 3.54 nJ/bit-RX, 0.671 nJ/bit-TX burst mode super-regenerative UWB transceiver in 0.18 μm CMOS. IEEE Transactions on Circuits and Systems, Regular Papers, 61(8).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Technologies for Medicine and Signals (ATMS) ENISUniversity of SfaxSfaxTunisia
  2. 2.Laboratory of Electronics and Information Technology (LETI), ENISUniversity of SfaxSfaxTunisia

Personalised recommendations