Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 323–328 | Cite as

Gamma-Irradiated Bifidobacteria Establish a Protective Effect on Mice to Experimental Radiation Exposure

  • Konstantin Vladimirovich Sychev
  • Ramzi Nizamovich Nizamov
  • Malik Nilovich Mukminov
  • Kamil Saubanovich Khaertynov
  • Natalya Mikhaylovna Aleksandrova
  • Ilsur Gabdulkhakovich Galimzyanov
  • Fazil Akberovich Medetkhanov
  • Elena Svyatoslavovna Koshpaeva
  • Ayrat Sharafetdinovich Khafizov
  • Eduard Arkadevich Shuralev
Article
  • 54 Downloads

Abstract

The purpose of this work is to assess the radioprotective effect exerted by the irradiated form of Bifidobacterium bifidum probiotic on experimentally irradiated mice. As a result of the research, we were able to determine experimentally the optimal dose of gamma rays (12–14 Gy) that ensures a switching of the metabolism of probiotic microorganisms towards the synthesis of superoxide dismutase (an antiradical enzyme) and activates production of interferon (a mediator of immunopoiesis) by immunocompetent cells. The mice were exposed to 8.0 Gy doses of \( {}_{\;}{}^{137}\mathrm{Cs} \)gamma radiation at an exposure dose rate of 3.13 × 10−5 C/(kg s). Twenty four hours after the exposure, the animals were administered subcutaneously a single 0.2-ml dose (1 × 108 CFU) of either native bifidumbacterin or the radiation-modified form of this probiotic. The radioprotective effect was evaluated according to various parameters, such as the change in hematological parameters, the quantitative composition of the gut microbiome, and the ability of the drug to induce the release intercellular interaction mediators (interferons) by stimulated immune cells of the host. A single subcutaneous injection of 1 × 108 CFU of either native bifidumbacterin or its irradiated form, administered in the composition of the growth medium 24 h after the irradiation, protects 60 to 80% of lethally irradiated white mice. The radioprotective effect of the biopreparation is associated with a milder form of acute radiation syndrome, makes pancytopenia less severe (1.13–1.21 times against 2.7–4.9 times in the irradiated control group), and reduces the number of opportunistic enterobacteria (2.2 lg against 4.9 lg in the irradiated animals) in the intestine.

Keywords

Bifidobacterium bifidum Gamma radiation Acute radiation syndrome Interferon Superoxide dismutase 

Notes

Compliance with Ethical Standards

The experiments in animal models were approved by the Ethical Committee of the Federal Center for Toxicological, Radiation and Biological Safety (Kazan, Russia).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Maltsev, V. N. (1978). The intestinal autoflora as indicator of radiation injury severity. Journal of Microbiology, Epidemiology and Immunobiology, 55(12), 10–14 [Article in Russian].Google Scholar
  2. 2.
    Klemparskaya, N. N., Gorbunova, E. S., & Dobronravov, N. N. (1991). Immunotropism of experimental acute radiation disease. Moscow: Energoizdat [Book in Russian].Google Scholar
  3. 3.
    Gindullin, A. I., Shamilova, T. A., Gindullina, D. A., Tremasov, M. Y., Ivanov, A. V., Ivanov, A. A., Chernov, A. N., Mukminov, M. N., & Shuralev, E. A. (2015). Influence of probiotics spas and biosporin at t-2 toxication of broiler chickens. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(4), 2142–2150.Google Scholar
  4. 4.
    Matrosova, L. E., Tremasov, M. Y., Cherednichenko, Y. V., Matveeva, E. L., Ivanov, A. A., Mukminov, M. N., Ivanov, A. V., & Shuralev, E. A. (2016). Efficiency of specific biopreparations in organic waste management. Indian Journal of Science and Technology, 9(18), e1–e6.  10.17485/ijst/2016/v9i18/93762.CrossRefGoogle Scholar
  5. 5.
    Plotnikova, E. M., Vasilevskiy, N. M., Evstifeev, V. V., Makaev, H. N., Spiridonov, G. N., Chernov, A. N., & Shuralev, E. A. (2016). Preparation and use of transplantable cell line of newborn rabbits for reproduction of viruses. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(4), 2222–2228.Google Scholar
  6. 6.
    Mangutova, K. S., Plotnikova, E. M., Nikitin, A. I., Nizamov, R. N., & Shuralev, E. A. (2016). Application of gamma ray techniques in cell culture medium sterilization. International Journal of Pharmacy & Technology, 8(4), 24565–24571.Google Scholar
  7. 7.
    Shirobokov, M. A., Plotnikova, E. M., Nizamov, R. N., Nikitin, A. I., & Shuralev, E. A. (2016). Comparison of acute and fractionated irradiation of viral cell culture. International Journal of Advanced Biotechnology and Research, 7(4), 1341–1346.Google Scholar
  8. 8.
    Golovanova, A. M., Nizamov, R. N., Sychev, K. V., Vagin, K. N., & Mukminov, M. N. (2016). A composite therapeutic preparation for radioisotope elimination: theoretical presuppositions. International Journal of Pharmacy & Technology, 8(4), 24558–24564.Google Scholar
  9. 9.
    Pontefract, R. D., & Thatcher, F. S. (1970). An electron microscopy study of mesosomes in irradiation-resistant mutants of Escherichia coli. Journal of Ultrastructure Research, 30(1), 78–86.CrossRefGoogle Scholar
  10. 10.
    Gentner, N. E., & Mitchel, R. E. (1975). Ionizing radiation-induced release of a cell surface nuclease from Micrococcus radiodurans. Radiation Research, 61(2), 204–215.CrossRefGoogle Scholar
  11. 11.
    Neta, R. (1997). Modulation with cytokines of radiation injury: suggested mechanisms of action. Environmental Health Perspectives, 105(suppl. 6), 1463–1465.CrossRefGoogle Scholar
  12. 12.
    Rozhdestvensky, L. M., Shcherbova, E. N., Sernichenko, A. N., & Konradov, A. A. (1996). The phenomenology and possible mechanisms of a new experimental method for accelerating postirradiation restoration of hemopoietic stem cell potential. Radiation Research, 146(5), 569–576.CrossRefGoogle Scholar
  13. 13.
    Chen, T. T., Hua, W., Zhang, X. Z., Wang, B. H., & Yang, Z. S. (2017). The effects of pprI gene of Deinococcus radiodurans R1 on acute radiation injury of mice exposed to 60Co γ-ray radiation. Oncotarget, 8(2), 2008–2019.  10.18632/oncotarget.13893.Google Scholar
  14. 14.
    Shi, Y., Wu, W., Qiao, H., Yue, L., Ren, L., Zhang, S., Yang, W., & Yang, Z. (2016). The protein PprI provides protection against radiation injury in human and mouse cells. Scientific Reports, 6, e26664.  https://doi.org/10.1038/srep26664.CrossRefGoogle Scholar
  15. 15.
    Hassan, A. I., Ghoneim, M. A., Mahmoud, M. G., Asker, M. M., & Mohamed, S. S. (2016). Efficacy of polysaccharide from Alcaligenes xylosoxidans MSA3 administration as protection against γ-radiation in female rats. Journal of Radiation Research, 57(2), 189–200.  https://doi.org/10.1093/jrr/rrv075.CrossRefGoogle Scholar
  16. 16.
    Gajowik, A., & Dobrzyńska, M. M. (2014). Lycopene—antioxidant with radioprotective and anticancer properties. A review. Rocz Panstw Zakl Hig, 65(4), 263–271.Google Scholar
  17. 17.
    Dabral, N., Martha-Moreno-Lafont, S. N., & Vemulapalli, R. (2014). Oral immunization of mice with gamma-irradiated Brucella neotomae induces protection against intraperitoneal and intranasal challenge with virulent B. abortus 2308. PLoS One, 9(9), e107180.  https://doi.org/10.1371/journal.pone.0107180.CrossRefGoogle Scholar
  18. 18.
    GOST 28085-89: Biological preparations. Method for the bacteriological control of sterility (2011) State Standards Unified Database of Russian Federation. http://gostexpert.ru/gost/gost-28085-89. Accessed 26 May 2017 [Document in Russian].
  19. 19.
    GOST 12.1.007-76: Occupational safety standards system. Noxious substances. Classification and general safety requirements (2011) State Standards Unified Database of Russian Federation. http://gostexpert.ru/gost/gost-12.1.007-76. Accessed 26 May 2017 [Document in Russian].
  20. 20.
    Substantiation of hygienic standards for chemical substances in water of drinking and cultural-domestic water usage objects: Methodological Guidelines МУ 2.1.5.720-98 (1998) State Standards and Regulatory Documents Library. http://libgost.ru. Accessed 26 May 2017 [Document in Russian].
  21. 21.
    Belov, A. D., & Kirshin, V. A. (1987). Veterinary radiobiology. Moscow: Agropromizdat [Book in Russian].Google Scholar
  22. 22.
    Goncharova, G. I., Dorofeichuk, V. G., Smolianskaia, A. Z., & Sokolova, K. (1989). Microbial ecology of the intestines in health and in pathology. Antibiotiki i Khimioterapiya, 34(6), 462–466 [Article in Russian].Google Scholar
  23. 23.
    Stewart 2nd, W. E., & De Clercq, E. (1974). Relationship of cytotoxicity and interferon-inducing activity of polyriboinosinic acid: polyribocytidylic acid to the molecular weights of the homopolymers. The Journal of General Virology, 23(1), 83–89.CrossRefGoogle Scholar
  24. 24.
    Lea, D. E. (1956). Actions of radiation on living cells. Cambridge: University Press.Google Scholar
  25. 25.
    Ki, Y., Kim, W., Cho, H., Ahn, K., Choi, Y., & Kim, D. (2014). The effect of probiotics for preventing radiation-induced morphological changes in intestinal mucosa of rats. Journal of Korean Medical Science, 29(10), 1372–1378.  https://doi.org/10.3346/jkms.2014.29.10.1372.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Konstantin Vladimirovich Sychev
    • 1
  • Ramzi Nizamovich Nizamov
    • 2
  • Malik Nilovich Mukminov
    • 3
    • 4
  • Kamil Saubanovich Khaertynov
    • 2
    • 4
  • Natalya Mikhaylovna Aleksandrova
    • 2
    • 3
  • Ilsur Gabdulkhakovich Galimzyanov
    • 5
  • Fazil Akberovich Medetkhanov
    • 5
  • Elena Svyatoslavovna Koshpaeva
    • 1
  • Ayrat Sharafetdinovich Khafizov
    • 2
  • Eduard Arkadevich Shuralev
    • 2
    • 3
    • 4
  1. 1.Kazan State Medical UniversityKazanRussian Federation
  2. 2.Federal Center for ToxicologicalRadiation and Biological SafetyKazanRussian Federation
  3. 3.Kazan Federal UniversityKazanRussian Federation
  4. 4.Kazan State Medical AcademyKazanRussian Federation
  5. 5.Bauman Kazan State Academy of Veterinary MedicineKazanRussian Federation

Personalised recommendations