, Volume 8, Issue 1, pp 313–318 | Cite as

Exploring the Integration of Threaded Implants: the Chemical Deep Etching Approach

  • Fanilya A. Hafizova
  • Ruslan M. Mirgazizov
  • Rais G. Hafizov
  • Airat M. Mirgazizov
  • Dmitriy E. Tsyplakov
  • Irek R. Hafizov
  • Dina A. Azizova
  • Мikhail A. Sergeev
  • Airat R. Kayumov
  • Marsel Z. Mirgazizov


While various techniques for analyses of the bone/implant interface are developed, most of them do not show the osseointegration process in details. In this article, we present a new inverted approach to explore the osseointegration of the dental implants, based on the chemical deep etching of titanium implants. An approach was tested on 18 implants inserted in 6 dogs. Bone/implant blocks were taken after 1, 3, and 6 months after implantation. The titanium was chemically removed from the interface, leaving the bone tissue intact. Once metal was removed, bone tissue was analyzed macroscopically and with a scanning electron microscope, afterwards decalcified and used for histological analysis. The clear patterns of implant integration into the bone tissue were obtained after 1, 3, and 6 months after implantation. After 1 month, the bone/implant interface was still very immature. After 3 months, the bone was already quite mature and organized. After 6 months, the external bone layer on the bone/implant interface appeared in its final osseointegrated form. The presented inverted method for the osseointegration analysis offers new insight into the healing process of the bone/implant interface after implantation, as well as integrative processes occurring around implants with different surfaces and designs.


Dental implants Bone tissue Histology Osseointegration 


Funding Information

We like to acknowledge the support of this work by the Russian Science Foundation (project No. 15-14-00046) and subsidy of the Russian Government to support the Program of competitive development of Kazan Federal University.


  1. 1.
    Dohan Ehrenfest, D. M., Coelho, P. G., Kang, B. S., Sul, Y. T., & Albrektsson, T. (2010). Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends in Biotechnology, 28(4), 198–206.CrossRefGoogle Scholar
  2. 2.
    Coelho, P. G., Granjeiro, J. M., Romanos, G. E., Suzuki, M., Silva, N. R., Cardaropoli, G., Thompson, V. P., & Lemons, J. E. (2009). Basic research methods and current trends of dental implant surfaces. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88(2), 579–596.CrossRefGoogle Scholar
  3. 3.
    Coelho, P. G., Suzuki, M., Marin, C., Granato, R., Gil, L. F., Tovar, N., Jimbo, R., Neiva, R., & Bonfante, E. A. (2015). Osseointegration of plateau root form implants: unique healing pathway leading to Haversian-like long-term morphology. Advances in Experimental Medicine and Biology, 881, 111–128.CrossRefGoogle Scholar
  4. 4.
    Mirgazizov, M. Z., Khafizov, R. G., Mirgazizov, R. M., Kolobov, I. R., Tsyplakov, D. E., Mirgazizov, A. M., & Khafizova, F. A. (2013). Experimental base for internal connection dental implants for two-step implantation. Stomatologiia (Mosk), 92(3), 4–8.Google Scholar
  5. 5.
    Calvo-Guirado, J. L., Satorres-Nieto, M., Aguilar-Salvatierra, A., Delgado-Ruiz, R. A., Maté-Sánchez de Val, J. E., Gargallo-Albiol, J., Gómez-Moreno, G., & Romanos, G. E. (2015). Influence of surface treatment on osseointegration of dental implants: histological, histomorphometric and radiological analysis in vivo. Clinical Oral Investigations, 19(2), 509–517.CrossRefGoogle Scholar
  6. 6.
    Du, Z., Ivanovski, S., Hamlet, S. M., Feng, J. Q., & Xiao, Y. (2016). The ultrastructural relationship between osteocytes and dental implants following osseointegration. Clinical Implant Dentistry and Related Research, 18(2), 270–280.CrossRefGoogle Scholar
  7. 7.
    Eroglu, C. N., Ertugrul, A. S., Eskitascioglu, M., & Eskitascioglu, G. (2016). Changes in the surface of bone and acid-etched and sandblasted implants following implantation and removal. European Journal of Dentistry, 10(1), 77–81.CrossRefGoogle Scholar
  8. 8.
    Mirgazizov MZ, Hafizov RG, Mirgazizov AM, Mirgazizov RM, Hafizova FA, Zyplakov DE. (2013) Interfaces in osseointegrated dental implants and a new inverted approach to their microscopic and histological study. Inverted approach for implant interface analysis. POSEIDO, 1(3), 141–147Google Scholar
  9. 9.
    Mirgazizov MZ, Hafizov RG, Mirgazizov М. (1996) Endosseous implant and its installation. RF Patent 2135117.Google Scholar
  10. 10.
    Cai, W. X., Ma, L., Zheng, L. W., Kruse-Gujer, A., Stübinger, S., Lang, N. P., & Zwahlen, R. A. (2015). Influence of non-steroidal anti-inflammatory drugs (NSAIDs) on osseointegration of dental implants in rabbit calvaria. Clinical Oral Implants Research, 26(4), 478–483.CrossRefGoogle Scholar
  11. 11.
    Payer, M., Lohberger, B., Strunk, D., Reich, K. M., Acham, S., & Jakse, N. (2014). Effects of directly autotransplanted tibial bone marrow aspirates on bone regeneration and osseointegration of dental implants. Clinical Oral Implants Research, 25, 468–474.CrossRefGoogle Scholar
  12. 12.
    Mirgazizov MZ, Mirgazizov RM, Hafizova FA, Hafizov RG, Khairullin FA, Gunter VE, Zyplakov DE, Kozlova AK. (2009) The method of deep etching. RF Patent 2464646.Google Scholar
  13. 13.
    Bancroft, J. D., & Stevens, A. (1996). Theory and practice of histotechnological techniques (4th ed.). New York(NY): Churchill Livingstone.Google Scholar
  14. 14.
    Hafizov RG, Mirgazizov MZ, Hafizova FA, Khairullin FA, Aripov RA, Kozlova AK. (2009) Surgical punch-conductor for gingival regeneration around dental implants. RF Patent 92608.Google Scholar
  15. 15.
    Mirgazizov MZ, Hafizov RG, Mirgazizov RM. (1996) Dental implant and method of its installation. RF Patent 2135118.Google Scholar
  16. 16.
    Hafizov RG., Mirgazizov MZ, Hafizova FA, Zhitko AK, Hafizov RG, Mirgazizov RM. (2009) Single-phased mechanical active implant. RF Patent 86449.Google Scholar
  17. 17.
    Kang, B. S., Sul, Y. T., Oh, S. J., Lee, H. J., & Albrektsson, T. (2009). XPS, AES and SEM analysis of recent dental implants. Acta Biomaterialia, 5(6), 2222–2229.CrossRefGoogle Scholar
  18. 18.
    Morra, M., Cassinelli, C., Bruzzone, G., Carpi, A., Di Santi, G., Giardino, R., & Fini, M. (2003). Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. The International Journal of Oral & Maxillofacial Implants, 18(1), 40–45.Google Scholar
  19. 19.
    Cassinelli, C., Morra, M., Bruzzone, G., Carpi, A., Di Santi, G., Giardin, R., & Fini, M. (2003). Surface chemistry effects oftopographic modification of titanium dental implant surfaces: 2. In vitro experiments. The International Journal of Oral & Maxillofacial Implants, 18(1), 46–52.Google Scholar
  20. 20.
    Marin, C., Bonfante, E. A., Jeong, R., Granato, R., Giro, G., Suzuki, M., Heitz, C., & Coelho, P. G. (2013). Histologic and biomechanical evaluation of 2 resorbable-blasting media implant surfaces at early implantation times. The Journal of Oral Implantology, 39(4), 445–453.CrossRefGoogle Scholar
  21. 21.
    Kang, B. S., Sul, Y. T., Johansson, C. B., Oh, S. J., Lee, H. J., & Albrektsson, T. (2012). The effect of calcium ion concentration on the bone response to oxidized titanium implants. Clinical Oral Implants Research, 23(6), 690–697.CrossRefGoogle Scholar
  22. 22.
    Jung, H., Kim, H. J., Hong, S., Kim, K. D., Moon, H. S., Je, J. H., & Hwu, Y. (2003). Osseointegration assessment of dental implants using a synchrotron radiation imaging technique: a preliminary study. The International Journal of Oral & Maxillofacial Implants, 18(1), 121–126.Google Scholar
  23. 23.
    Park, Y. S., Yi, K. Y., Lee, I. S., & Jung, Y. C. (2005). Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clinical Oral Implants Research, 16(2), 156–160.CrossRefGoogle Scholar
  24. 24.
    Song, J. W., Cha, J. Y., Bechtold, T. E., & Park, Y. C. (2013). Influence of peri-implant artifacts on bone morphometric analysis with micro-computed tomography. The International Journal of Oral & Maxillofacial Implants, 28(2), 519–525.CrossRefGoogle Scholar
  25. 25.
    Bartov, M. S., Karyagina, A. S., Gromov, A. V., Mishina, D. M., Trunova, G. I., Sidorova, E. I., Andreeva, E. V., Donchenko, S. V., Mukhametov, F. F., Mukhametov, U. F., Mirgazizov, M. Z., Mirgazizov, A. M., Hafizov, R. G., Lunin, V. G., Filippova, N. E., & Ginsburg, A. P. (2012). Osteoplastic preparations of the new generation “GAMALANT” containing growth regeneration factors of bone tissue. Department of Traumatology and Orthopedics, 2, 21–25.Google Scholar
  26. 26.
    Mirgazizov MZ, Mirgazizov AM, Mirgazizov RM, Hafizov RG, Lunin VG, Karyagina-Zhulina AS, Kotnova AP, Sharapova NE, Tkachuk AP, Bartov MS, Ginsburg AP. (2012) The method of address delivery of the osteoplastic materials containing growth and regeneration factors of the bone tissue. RF Patent 2469676.Google Scholar
  27. 27.
    Dohan Ehrenfest, D. M., Vazquez, L., Park, Y. J., Sammartino, G., & Bernard, J. P. (2011). Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. The Journal of Oral Implantology, 37(5), 525–542.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Fanilya A. Hafizova
    • 1
  • Ruslan M. Mirgazizov
    • 1
  • Rais G. Hafizov
    • 1
  • Airat M. Mirgazizov
    • 1
  • Dmitriy E. Tsyplakov
    • 2
  • Irek R. Hafizov
    • 2
  • Dina A. Azizova
    • 1
  • Мikhail A. Sergeev
    • 3
  • Airat R. Kayumov
    • 1
  • Marsel Z. Mirgazizov
    • 1
  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Kazan State Medical UniversityKazanRussia
  3. 3.Bauman Kazan State Academy of Veterinary MedicineKazanRussia

Personalised recommendations