Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 218–228 | Cite as

Effects of Silicon Application at Nano and Micro Scales on the Growth and Nutrient Uptake of Potato Minitubers (Solanum tuberosum var. Agria) in Greenhouse Conditions

  • M. Soltani
  • Mohammad Kafi
  • A. Nezami
  • H. R. Taghiyari
Article

Abstract

Silicon has shown to have significant improving effects on nutrient uptake in plants. In this research, the effects of four different silicon compounds (nanosilica, sodium silicate, nanoclay, and Bentonite) in two concentrations (1000 and 2000 ppm) on the growth characteristics and nutrient uptake of potato (Solanum tuberosum var. Agria) plants have been investigated. Silicon treatments, except sodium silicate, improved leaf properties (up to 18% in leaf dry weight in Bentonite (1000 ppm)) and increased stem diameter (up to 17% in nanoclay and Bentonite (1000 ppm)). All root characteristics were enhanced when silicon was applied (up to 54% in root area per plant in sodium silicate (1000 ppm)). Although minituber production was not affected by silicon treatments, minituber quality characteristics were improved by silicon application in comparison with the control plants. Si, Mo, K, and P contents increased, while Al and Mn contents decreased in both tuber and plant in Si application treatments. Whereas Mg, Zn, and Fe contents were lower in Si-treated plants, Si content favorably increased in tubers. Si content in plants showed an increasing pattern of nanosilica < Bentonite < nanoclay < sodium silicate with regard to the Silicon source.

Keywords

Bentonite ICP-OES Nanosilica Nanoclay Nutrients 

Notes

Acknowledgements

This research is part of a PhD thesis founded by the Department of Agronomy and Plant Breeding at Ferdowsi University of Mashhad, Iran.

References

  1. 1.
    Savvas, D., & Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66–81.  https://doi.org/10.1016/j.scienta.2015.09.010.CrossRefGoogle Scholar
  2. 2.
    Hashemi, A., Abdolzadeh, A., & Sadeghipour, H. R. (2010). Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition, 56(2), 244–253.  https://doi.org/10.1111/j.1747-0765.2009.00443.x.CrossRefGoogle Scholar
  3. 3.
    Van Bockhaven, J., De Vleesschauwer, D., & Höfte, M. (2013). Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. Journal of Experimental Botany, 64(5), 1281–1293.  https://doi.org/10.1093/jxb/ers329.CrossRefGoogle Scholar
  4. 4.
    Zhao, D., Hao, Z., Tao, J., & Han, C. (2013). Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.) Scientia Horticulturae, 151, 165–172.  https://doi.org/10.1016/j.scienta.2012.12.013.CrossRefGoogle Scholar
  5. 5.
    Pilon, C., Soratto, R. P., & Moreno, L. A. (2013). Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Science, 53(4), 1605–1614.  https://doi.org/10.2135/cropsci2012.10.0580.CrossRefGoogle Scholar
  6. 6.
    Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H. R., & Aghdasi, M. (2015). Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere, 25(2), 192–201.  https://doi.org/10.1016/S1002-0160(15)60004-2.CrossRefGoogle Scholar
  7. 7.
    Kamenidou, S., Cavins, T. J., & Marek, S. (2009). Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Scientia Horticulturae, 119(3), 297–301.  https://doi.org/10.1016/j.scienta.2008.08.012.CrossRefGoogle Scholar
  8. 8.
    Nanayakkara, U. N., Uddin, W., & Datnoff, L. E. (2008). Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types. Plant and Soil, 303(1–2), 83–94.  https://doi.org/10.1007/s11104-007-9488-x.CrossRefGoogle Scholar
  9. 9.
    Iwama, K. (2008). Physiology of the potato: New insights into root system and repercussions for crop management. Potato Research, 51(3–4), 333–353.  https://doi.org/10.1007/s11540-008-9120-3.CrossRefGoogle Scholar
  10. 10.
    Gregory, P. J., & Simmonds, L. P. (1992). Water relations and growth of potatoes. In P. M. Harris (Ed.), The potato crop: the scientific basis for improvement (pp. 214–246). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  11. 11.
    Palta, J. A., Chen, X., Milroy, S. P., Rebetzke, G. J., Dreccer, M. F., & Watt, M. (2011). Large root systems: are they useful in adapting wheat to dry environments? Functional Plant Biology, 38(5), 347–354.  https://doi.org/10.1071/FP11031.CrossRefGoogle Scholar
  12. 12.
    Chang, D., Cho, I., Suh, J.-T., Kim, S., & Lee, Y. (2011). Growth and yield response of three aeroponically grown potato cultivars (Solanum tuberosum L.) to different electrical conductivities of nutrient solution. American Journal of Potato Research, 88(6), 450–458.  https://doi.org/10.1007/s12230-011-9211-6.CrossRefGoogle Scholar
  13. 13.
    Chang, D., Park, C., Kim, S., Kim, S., & Lee, Y. (2008). Physiological growth responses by nutrient interruption in aeroponically grown potatoes. American Journal of Potato Research, 85(5), 315–323.  https://doi.org/10.1007/s12230-008-9024-4.CrossRefGoogle Scholar
  14. 14.
    Corrêa, R. M., Pinto, J. E. B. P., Pinto, C. A. B. P., Faquin, V., Reis, É. S., Monteiro, A. B., & Dyer, W. E. (2008). A comparison of potato seed tuber yields in beds, pots and hydroponic systems. Scientia Horticulturae, 116(1), 17–20.  https://doi.org/10.1016/j.scienta.2007.10.031.CrossRefGoogle Scholar
  15. 15.
    Gonçalves, J. F., Antes, F. G., Maldaner, J., Pereira, L. B., Tabaldi, L. A., Rauber, R., & Nicoloso, F. T. (2009). Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiology and Biochemistry, 47(9), 814–821.  https://doi.org/10.1016/j.plaphy.2009.04.002.CrossRefGoogle Scholar
  16. 16.
    Park, S. W., Jeon, J. H., Kim, H. S., Hong, S. J., Aswath, C., & Joung, H. (2009). The effect of size and quality of potato microtubers on quality of seed potatoes in the cultivar ‘superior’. Scientia Horticulturae, 120(1), 127–129.  https://doi.org/10.1016/j.scienta.2008.09.004.CrossRefGoogle Scholar
  17. 17.
    Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392–397.  https://doi.org/10.1016/j.tplants.2006.06.007.CrossRefGoogle Scholar
  18. 18.
    Bouma, T., Nielsen, K., & Koutstaal, B. (2000). Sample preparation and scanning protocol for computerized analysis of root length and diameter. Plant and Soil, 218(1–2), 185–196.  https://doi.org/10.1023/A:1014905104017.CrossRefGoogle Scholar
  19. 19.
    Gomez, M. R., Cerutti, S., Sombra, L. L., Silva, M. F., & Martínez, L. D. (2007). Determination of heavy metals for the quality control in Argentinian herbal medicines by ETAAS and ICP-OES. Food and Chemical Toxicology, 45(6), 1060–1064.  https://doi.org/10.1016/j.fct.2006.12.013.CrossRefGoogle Scholar
  20. 20.
    Wilson, M. J. (2007). Handbook of clay science, F. Bergaya, B.K.G. Theng, G. Lagaly (Eds.). Elsevier, Amsterdam.Google Scholar
  21. 21.
    Ada, R. (2013). Cluster analysis and adaptation study for safflower genotypes. Bulgarian Journal of Agricultural Science, 19(1), 103–109.Google Scholar
  22. 22.
    Shaterian, J., Waterer, D., Jong, H. D., & Tanino, K. K. (2005). Differential stress responses to NaCl salt application in early- and late-maturing diploid potato (Solanum sp.) clones. Environmental and Experimental Botany, 54(3), 202–212.  https://doi.org/10.1016/j.envexpbot.2004.07.005.CrossRefGoogle Scholar
  23. 23.
    Dakora, F. D., & Nelwamondo, A. (2003). Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Functional Plant Biology, 30(9), 947–953.CrossRefGoogle Scholar
  24. 24.
    Crusciol, C. A. C., Pulz, A. L., Lemos, L. B., Soratto, R. P., & Lima, G. P. P. (2009). Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Science, 49(3). doi:  https://doi.org/10.2135/cropsci2008.04.0233.
  25. 25.
    Guntzer, F., Keller, C., & Meunier, J.-D. (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1), 201–213.  https://doi.org/10.1007/s13593-011-0039-8.CrossRefGoogle Scholar
  26. 26.
    Libault, M., Brechenmacher, L., Cheng, J., Xu, D., & Stacey, G. (2010). Root hair systems biology. Trends in Plant Science, 15(11), 641–650.  https://doi.org/10.1016/j.tplants.2010.08.010.CrossRefGoogle Scholar
  27. 27.
    Feng, J., Ma, S. G., Tamai, K., & Ichii, M. (2001). Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology, 127(4), 1773–1780.  https://doi.org/10.1104/pp.010271.CrossRefGoogle Scholar
  28. 28.
    Ma, J. F., Tamai, K., Ichii, M., & Wu, G. F. (2002). A rice mutant defective in Si uptake1. Plant Physiology, 130(4), 2111–2117.  https://doi.org/10.1104/pp.010348.CrossRefGoogle Scholar
  29. 29.
    Vulavala, V. R., Elbaum, R., Yermiyahu, U., Fogelman, E., Kumar, A., & Ginzberg, I. (2015). Silicon fertilization of potato: expression of putative transporters and tuber skin quality. Planta, 1–13. doi:  https://doi.org/10.1007/s00425-015-2401-6.
  30. 30.
    Lebot, V. (2009). Tropical root and tuber crops: cassava, sweet potato, yams and aroids: CABI.Google Scholar
  31. 31.
    Lommen, W. J. M. (1994). Effect of weight of potato minitubers on sprout growth, emergence and plant characteristics at emergence. Potato Research, 37(3), 315–322.  https://doi.org/10.1007/bf02360524.CrossRefGoogle Scholar
  32. 32.
    Mitani, N., & Ma, J. F. (2005). Uptake system of silicon in different plant species. Journal of Experimental Botany, 56(414), 1255–1261.  https://doi.org/10.1093/jxb/eri121.CrossRefGoogle Scholar
  33. 33.
    Ma, J. F. (2005). Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Critical Reviews in Plant Sciences, 24(4), 267–281.  https://doi.org/10.1080/07352680500196017.CrossRefGoogle Scholar
  34. 34.
    Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65(19), 3049–3057.  https://doi.org/10.1007/s00018-008-7580-x.CrossRefGoogle Scholar
  35. 35.
    White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84.  https://doi.org/10.1111/j.1469-8137.2008.02738.x.CrossRefGoogle Scholar
  36. 36.
    Karley, A. J., & White, P. J. (2009). Moving cationic minerals to edible tissues: potassium, magnesium and calcium. Current Opinion in Plant Biology, 12(3), 291–298.  https://doi.org/10.1016/j.pbi.2009.04.013.CrossRefGoogle Scholar
  37. 37.
    Shaul, O. (2002). Magnesium transport and function in plants: the tip of the iceberg. Biometals, 15(3), 307–321.  https://doi.org/10.1023/A:1016091118585.CrossRefGoogle Scholar
  38. 38.
    Brackhage, C., Schaller, J., Bäucker, E., & Dudel, E. G. (2013). Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. SILICON, 5(3), 199–204.  https://doi.org/10.1007/s12633-013-9145-3.CrossRefGoogle Scholar
  39. 39.
    Ma, J., & Takahashi, E. (1993). Interaction between calcium and silicon in water-cultured rice plants. Plant and Soil, 148(1), 107–113.  https://doi.org/10.1007/BF02185390.CrossRefGoogle Scholar
  40. 40.
    Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany, 120, 8–17.  https://doi.org/10.1016/j.envexpbot.2015.07.001.CrossRefGoogle Scholar
  41. 41.
    Mali, M., & Aery, N. C. (2009). Effect of silicon on growth, biochemical constituents, and mineral nutrition of cowpea. Communications in Soil Science and Plant Analysis, 40(7–8), 1041–1052.  https://doi.org/10.1080/00103620902753590.CrossRefGoogle Scholar
  42. 42.
    Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63(1), 131–152.  https://doi.org/10.1146/annurev-arplant-042811-105522.CrossRefGoogle Scholar
  43. 43.
    Briat, J.-F., Curie, C., & Gaymard, F. (2007). Iron utilization and metabolism in plants. Current Opinion in Plant Biology, 10(3), 276–282.  https://doi.org/10.1016/j.pbi.2007.04.003.CrossRefGoogle Scholar
  44. 44.
    Ma, J. F., & Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan: Elsevier.Google Scholar
  45. 45.
    Anwaar, S., Ali, S., Ali, S., Ishaque, W., Farid, M., Farooq, M., & Sharif, M. (2015). Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environmental Science and Pollution Research, 22(5), 3441–3450.  https://doi.org/10.1007/s11356-014-3938-9.CrossRefGoogle Scholar
  46. 46.
    Kaya, C., Tuna, A. L., Sonmez, O., Ince, F., & Higgs, D. (2009). Mitigation effects of silicon on maize plants grown at high zinc. Journal of Plant Nutrition, 32(10), 1788–1798.  https://doi.org/10.1080/01904160903152624.CrossRefGoogle Scholar
  47. 47.
    da Cunha, K., & do Nascimento, C. (2009). Silicon effects on metal tolerance and structural changes in maize (Zea mays l.) grown on a cadmium and zinc enriched soil. Water, Air, and Soil Pollution, 197(1–4), 323–330.  https://doi.org/10.1007/s11270-008-9814-9.CrossRefGoogle Scholar
  48. 48.
    Neumann, D., & zur Nieden, U. (2001). Silicon and heavy metal tolerance of higher plants. Phytochemistry, 56(7), 685–692.  https://doi.org/10.1016/S0031-9422(00)00472-6.CrossRefGoogle Scholar
  49. 49.
    Liang, Y., Sun, W., Zhu, Y.-G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147(2), 422–428.  https://doi.org/10.1016/j.envpol.2006.06.008.CrossRefGoogle Scholar
  50. 50.
    Kidd, P. S., Llugany, M., Poschenrieder, C., Gunsé, B., & Barceló, J. (2001). The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.) Journal of Experimental Botany, 52(359), 1339–1352.  https://doi.org/10.1093/jexbot/52.359.1339.Google Scholar
  51. 51.
    Prabagar, S., Hodson, M. J., & Evans, D. E. (2011). Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.) Environmental and Experimental Botany, 70(2–3), 266–276.  https://doi.org/10.1016/j.envexpbot.2010.10.001.CrossRefGoogle Scholar
  52. 52.
    Pittman, J. K. (2005). Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytologist, 167(3), 733–742.  https://doi.org/10.1111/j.1469-8137.2005.01453.x.CrossRefGoogle Scholar
  53. 53.
    Doncheva, S., Poschenrieder, C., Stoyanova, Z., Georgieva, K., Velichkova, M., & Barceló, J. (2009). Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany, 65(2–3), 189–197.  https://doi.org/10.1016/j.envexpbot.2008.11.006.CrossRefGoogle Scholar
  54. 54.
    Liang, Y., Zhang, W., Chen, Q., Liu, Y., & Ding, R. (2006). Effect of exogenous silicon (Si) on H+−ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.) Environmental and Experimental Botany, 57(3), 212–219.  https://doi.org/10.1016/j.envexpbot.2005.05.012.CrossRefGoogle Scholar
  55. 55.
    Tuna, A. L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62(1), 10–16.  https://doi.org/10.1016/j.envexpbot.2007.06.006.CrossRefGoogle Scholar
  56. 56.
    Ma, J., & Takahashi, E. (1990). Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil, 126(1), 115–119.  https://doi.org/10.1007/BF00041376.CrossRefGoogle Scholar
  57. 57.
    Jianfeng, M. A., & Takahashi, E. (1991). Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant and Soil, 133(2), 151–155.  https://doi.org/10.1007/BF00009187.CrossRefGoogle Scholar
  58. 58.
    Miao, B.-H., Han, X.-G., & Zhang, W.-H. (2010). The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annals of Botany.  https://doi.org/10.1093/aob/mcq063.
  59. 59.
    Liang, Y. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209(2), 217–224.  https://doi.org/10.1023/A:1004526604913.CrossRefGoogle Scholar
  60. 60.
    Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39(12), 2804–2814.  https://doi.org/10.1007/s11661-008-9603-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • M. Soltani
    • 1
  • Mohammad Kafi
    • 1
  • A. Nezami
    • 1
  • H. R. Taghiyari
    • 2
  1. 1.Department of Agronomy and Plant BreedingFerdowsi University of MashhadMashhadIran
  2. 2.Faculty of Civil EngineeringShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations