, Volume 8, Issue 1, pp 36–42 | Cite as

Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review

  • V. D. Rajput
  • T. Minkina
  • S. Suskova
  • S. Mandzhieva
  • V. Tsitsuashvili
  • V. Chapligin
  • A. Fedorenko


Nanoparticles (NPs) received great attention due to their unique properties and beneficiary applications in various sectors. The rapid growth of NPs production and its abundant uses create additional risks on an anthropogenically modified ecosystem, and consequently on human beings. The main aim of this review article is to explore the possible threats imposed by CuO NPs on cultivated crop plants. We searched PubMed, Google Scholar, and Web of Science portals for the literature review to get latest updated information and developments in the field of toxicity of CuO NPs on cultivated plants. This review article clearly denoted the toxic effects of CuO NPs on cultivated crop plants by inhibiting seed germination, decreases in the shoot and root lengths, reduction in photosynthesis and respiration rate, and morphological as well enzymatic changes. The information is significant to researchers and policymakers to define limits and future prospectives.


Nanoparticles Plant Soil Toxicity CuO 


Funding information

This work was supported by the Russian Science Foundation (no. 16-14-10217).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Keller, A. A., & Lazareva, A. (2014). Predicted releases of engineered nanomaterials: From global to regional to local. Environmental Science & Technology Letters, 1, 65–70.CrossRefGoogle Scholar
  2. 2.
    Salata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2, 3.Google Scholar
  3. 3.
    Servin, A. D., De la Torre-Roche, R., Castillo-Michel, H., Pagano, L., Hawthorne, J., Musante, C., Pignatello, J., Uchimiya, M., & White, J. C. (2016). Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiology and Biochemistry, 110, 147–157.CrossRefGoogle Scholar
  4. 4.
    Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46, 2242–2250.CrossRefGoogle Scholar
  5. 5.
    Yadav, T., Mungray, A. A., & Mungray, A. K. (2014). Fabricated nanoparticles: current status and potential phytotoxic threats. Reviews of Environmental Contamination and Toxicology, 230, 83–110.Google Scholar
  6. 6.
    Josko, I., Oleszczuk, P., & Futa, B. (2014). The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma, 232, 528–537.CrossRefGoogle Scholar
  7. 7.
    Rajput, V. D., Tatiana, M., Svetlana, S., Viktoriia, T., Saglara, M.,  Andrey, G.,  Dina, N., & Natalya, G.  (2017). Effect of nanoparticles on crops and soil microbial communities. Journal of Soils and Sediments, 1–9.
  8. 8.
    BBC. (2015) Nanotechnology in environmental applications: the global market. ​Nano, 39C. ​ Accessed 15 May 2017.
  9. 9.
    BBC. (2017). Global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes. Nano, 21G. ​ Accessed 15 May 2017.
  10. 10.
    Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59, 3485–3498.CrossRefGoogle Scholar
  11. 11.
    Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., Dizdaroglu, M., Xing, B., & Nelson, B. C. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science & Technology, 46, 1819–1827.CrossRefGoogle Scholar
  12. 12.
    Powers, K. W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M., & Roberts, S. M. (2006). Research strategies for safety evaluation of nanomaterials. Part VI characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences, 90, 296–303.CrossRefGoogle Scholar
  13. 13.
    Royal Society and Royal Academy of Engineering. (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. Royal Society Policy Document 19/04. London: Royal Society. Accessed 07 Mar 2017.
  14. 14.
    Handy, R. D., & Shaw, B. J. (2007). Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk & Society, 9, 125–144.Google Scholar
  15. 15.
    Chibber, S., Ansari, S. A., & Satar, R. (2013). New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. Journal of Nanoparticle Research, 15, 1–13.CrossRefGoogle Scholar
  16. 16.
    Sommer, A. L. (1931). Copper as an essential for plant growth. Plant Physiology, 6, 339–345.CrossRefGoogle Scholar
  17. 17.
    Rafique, M., Shaikh, A. J., Rasheed, R., Tahir, M. B., Bakhat, H. F., Rafique, M. S., & Rabbani, F. (2017). A review on synthesis, characterization and applications of copper nanoparticles using green method. Nano, 12, 04.CrossRefGoogle Scholar
  18. 18.
    An, Y. J. (2006). Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere, 62, 1359–1365.CrossRefGoogle Scholar
  19. 19.
    Baker, D. E., & Senef, J. P. (1995). Copper. In B. J. Alloy (Ed.), Heavy metals in soils (pp. 179–205). London: Blackie Academic and Professional.CrossRefGoogle Scholar
  20. 20.
    Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12, 259–266.CrossRefGoogle Scholar
  21. 21.
    Ivask, A., Bondarenko, O., Jepihhina, N., & Kahru, A. (2010). Profiling of the reactive oxygen species related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and Bioanalytical Chemistry, 398, 701–716.CrossRefGoogle Scholar
  22. 22.
    Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161–1208.CrossRefGoogle Scholar
  23. 23.
    Ahamed, M., Siddiqui, M. A., Akhtar, M. J., Ahmad, I., Pant, A. B., & Alhadlaq, H. A. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications, 396, 578–583.CrossRefGoogle Scholar
  24. 24.
    Sharma, D., Kanchi, S., & Bisetty, K. (2015). Biogenic synthesis of nanoparticles: a review. Arabian Journal of Chemistry.
  25. 25.
    Kumar, P. P. N. V., Shameem, K. P., Kalyani, R. L., & Pammi, S. V. N. (2015). Green synthesis of copper oxide nanoparticles using aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoScience, 5, 135–139.Google Scholar
  26. 26.
    Kasana, R. C., Panwar, N. R., Kaul, R. K., & Kumar, P. (2017). Biosynthesis and effects of copper nanoparticles on plants. Environmental Chemistry Letters, 15, 233–240.CrossRefGoogle Scholar
  27. 27.
    Shams, M., Yildirim, E., Agar, G., Ercisli, S., Dursun, A., Ekinci, M., & Kul, R. (2018). Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Notulae Botanicae Horti Agrobotanici, 46(1), 167–172.Google Scholar
  28. 28.
    Hong, J., Rico, C. M., Zhao, L., Adeleye, A. S., Keller, A. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environmental Science: Processes & Impacts, 17, 177–185.Google Scholar
  29. 29.
    Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., & Johnson, W. P. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14, 1125.CrossRefGoogle Scholar
  30. 30.
    Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mungbean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27, 1915–1921.CrossRefGoogle Scholar
  31. 31.
    Nair, P. M. G., & Chung, M. (2014). Copper oxide nanoparticle toxicity in mungbean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiologiae Plantarum, 36, 2947–2958.CrossRefGoogle Scholar
  32. 32.
    Apodaca, S. A., Tana, W., Dominguezb, O. E., Hernandez-Viezcasc, J. A., Peralta-Videaa, J. R., & Gardea-Torresdey, J. L. (2017). Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants. Sci Total Environ, 599-600, 2085–2094.CrossRefGoogle Scholar
  33. 33.
    Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J. C., & Xing, B. (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.) Environmental Science & Technology, 46, 4434–4441.CrossRefGoogle Scholar
  34. 34.
    Kim, S., Sin, H., Lee, S., & Lee, I. (2013). Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. Journal of Microbiology and Biotechnology, 23(9), 1279–1286.CrossRefGoogle Scholar
  35. 35.
    Moon, Y. S., Park, E. S., Kim TO, Lee, H. S., & Lee, S. E. (2014). SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Envrionmental Toxicology and Pharmacology, 38, 922–931.CrossRefGoogle Scholar
  36. 36.
    Zuverza-Mena, N., Medina-Velo, I. A., Barrios, A. C., Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environmental Science: Processes & Impacts, 17, 1783–1793.Google Scholar
  37. 37.
    Peng, C., Duan, D., Xu, C., Chen, Y., Sun, L., Zhang, H., Yuan, X., Zheng, L., Yang, Y., Yang, J., Zhen, X., Chen, Y., & Shi, J. (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environmental Pollution, 197, 99–107.CrossRefGoogle Scholar
  38. 38.
    Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93, 906–915.CrossRefGoogle Scholar
  39. 39.
    Costa, D. M. V. J., & Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54, 110.CrossRefGoogle Scholar
  40. 40.
    Singh, D., & Kumar, A. (2016). Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bulletin of Environmental Contamination and Toxicology, 97, 548–553.CrossRefGoogle Scholar
  41. 41.
    Deng, F., Wang, S., & Xin, H. (2016). Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bulletin of Environmental Contamination and Toxicology, 97, 702–708.CrossRefGoogle Scholar
  42. 42.
    Rao, S., & Shekhawat, G. S. (2016). Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3. Biotech, 6, 244.Google Scholar
  43. 43.
    Nair, P. M. G., & Chung, I. M. (2015). Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in indian mustard (Brassica juncea L.) Ecotoxicology and Environmental Safety, 113, 302–313.CrossRefGoogle Scholar
  44. 44.
    Zafar, H., Ali, A., & Zia, M. (2017). CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Applied Biochemistry and Biotechnology, 181, 365–378.CrossRefGoogle Scholar
  45. 45.
    Singh, A., Singh, N. B., Hussain, I., & Singh, H. (2017). Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. Journal of Biotechnology, 262, 11–27.CrossRefGoogle Scholar
  46. 46.
    Nair, P. G., & Chung, I. (2014). A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biological Trace Element Research, 162, 342–352.Google Scholar
  47. 47.
    Ebbs, S. D., Bradfield, S. J., Kumar, P., White, J. C., Musante, C., & Ma, X. (2016). Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science Nano, 3, 114–126.CrossRefGoogle Scholar
  48. 48.
    Bradfield, S. J., Kumar, P., White, J. C., & Ebbs, S. D. (2017). Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiology and Biochemistry, 110, 128–137.CrossRefGoogle Scholar
  49. 49.
    Shaw, A. K., Ghosh, S., Kalaji, H. M., Bosa, K., Brestic, M., Zivcak, M., & Hossain, Z. (2014). Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of syrian barley (Hordeum vulgare L.) Environmental and Experimental Botany, 102, 37–47.CrossRefGoogle Scholar
  50. 50.
    Nhan, L. V., Yukui, R., Weidong, C., Jianying, S., Shutong, L., Trung, N. Q., & Liming, L. (2016). Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. Journal of Plant Interactions, 11, 108–116.CrossRefGoogle Scholar
  51. 51.
    Le Van, N., Ma, C. X., Shang, J. Y., Rui, Y. K., Liu, S. T., & Xing, B. S. (2016). Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere, 144, 661–670.CrossRefGoogle Scholar
  52. 52.
    Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C., & Rao, A. S. (2012). Effect of copper oxide nanoparticle on seed germination of selected crops. Journal of Agricultural Science and Technology, 2, 815–823.Google Scholar
  53. 53.
    SG, W., Huang, L., Head, J., Chen, D. R., Kong, I. C., & Tang, Y. J. (2012). Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Journal of Petroleum & Environmental Biotechnology, 3, 126.Google Scholar
  54. 54.
    Rajput, V.D., Tstitsuashvili, V.S., Sushkova, S.N., & Nevidomskaya, D.G. (2017) Effects of ZnO and CuO nanoparticles on soil, plant and microbial community. International Scientific Conference XX Dokoutchaev Youth Readings, Saint Petersburg, Russia, UDC 631.416.8 (9). Accessed 05 May 2017.
  55. 55.
    Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43, 9473–9479.CrossRefGoogle Scholar
  56. 56.
    Harir, S. M., Asma, G. O., Kadhim, M. I., & Nabeel, K. I. (2017). Influence of silver and copper nanoparticles on physiological characteristics of Phaseolus vulgaris L. in vitro and in vivo. International Journal of Current Microbiology & Applied Sciences, 6(1), 834–843.Google Scholar
  57. 57.
    Singh, A., Singh, N. B., Hussain, I., Singh, H., & Yadav, V. (2017). Synthesis and characterization of copper oxide nanoparticles and its impact on germination of Vigna radiata (L.) R. Wilczek. Tropical Plant Biology, 4(2), 246–253.Google Scholar
  58. 58.
    Karlsson, H. L., Gustafsson, J., Cronholm, P., & Möller, L. (2009). Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicology Letters, 188, 112–118.CrossRefGoogle Scholar
  59. 59.
    Jain, N., Bhargava, A., Pareek, V., Akhtar, M. S., & Panwar, J. (2017). Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles? Ecotoxicology.
  60. 60.
    Wierzbicka, M., & Obidzinska, J. (1998). The uptake of lead on seed imbibition and germination in different plant species. Plant Science, 137, 155–171.CrossRefGoogle Scholar
  61. 61.
    Kranner, I., & Colville, L. (2011). Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany, 72, 93–105.Google Scholar
  62. 62.
    Miralles, P., Church, T. L., & Harris, A. T. (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science & Technology, 46, 9224–9239.CrossRefGoogle Scholar
  63. 63.
    Rajput, V.D., Minkina, T., Mandzhieva, S., Duply, N., Fedorenko, A., Sushkova, S., Tsitsuashvili, V. (2017). Influence of copper oxide nanoparticle on seed germination and seedling growth. International scientific conference on “modern technologies in the study of biodiversity and planting of plants, Rostov, Russia, 115-116. Accessed 26 Oct 2017.
  64. 64.
    Xiong, T. T., Dumat, C., Dappe, V., Vezin, H., Schreck, E., Shahid, M., Pierart, A., & Sobanska, S. (2017). Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environmental Science & Technology Letters.
  65. 65.
    Rajput, V. D., Chen, Y., & Ayup, M. (2015). Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth. Russian Journal of Plant Physiology, 62, 229–236.CrossRefGoogle Scholar
  66. 66.
    Olchowik, J., Bzdyk, R. M., Studnicki, M., Bederska-Błaszczyk, M., Urban, A., & Aleksandrowicz-Trzcińska, M. (2017). The effect of silver and copper nanoparticles on the condition of english oak (Quercus robur L.) seedlings in a container nursery experiment. Forests, 8, 310.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • V. D. Rajput
    • 1
  • T. Minkina
    • 1
  • S. Suskova
    • 1
  • S. Mandzhieva
    • 1
  • V. Tsitsuashvili
    • 1
  • V. Chapligin
    • 1
  • A. Fedorenko
    • 1
  1. 1.Academy of Biology and BiotechnologySouthern Federal UniversityRostovRussia

Personalised recommendations