, Volume 8, Issue 1, pp 196–206 | Cite as

Synergistic Antimicrobial and Cytotoxic Potential of Zinc Oxide Nanoparticles Synthesized Using Cassia auriculata Leaf Extract

  • Hemali Padalia
  • Pooja Moteriya
  • Sumitra Chanda


The problem of microbial resistance is growing, and search for novel approaches to tackle the problem on multidrug resistance pathogens is the need of the hour. The present investigation involves green synthesis of zinc oxide nanoparticles (ZnO NPs) using Cassia auriculata leaf extract and evaluates its synergistic antimicrobial and cytotoxic effect. The results of various techniques confirmed the formation of ZnO NPs. UV-visible spectrum of ZnO NPs showed maximum peak at 370 nm. The crystalline nature of the ZnO NPs was confirmed by XRD analysis. The SEM analysis revealed that particles were spherical and irregular in shape, and average size of nanoparticles was 68.64 nm. The antimicrobial activity and synergistic antimicrobial activity were evaluated against pathogenic microorganisms. ZnO NPs showed broad spectrum of antimicrobial activity against tested pathogens and enhanced synergistic antimicrobial activity as compared to standard antibiotic. Cytotoxic effect of ZnO NPs was evaluated by MTT assay against HeLa cancer cell line, and ZnO NPs showed dose-dependent cytotoxic activity. The synthesized ZnO NPs possess significant antimicrobial and cytotoxic activity and hence can be used therapeutically as nanomedicine for diagnosis and drug therapy.


Cassia auriculata Zinc oxide nanoparticles Characterization Synergistic antimicrobial activity Cytotoxic activity 



The authors thank the Department of Biosciences (UGC-CAS) for providing excellent research facilities. Ms. Hemali Padalia is thankful to UGC-CAS, and Ms. Pooja Moteriya is thankful to UGC, New Delhi, India, for providing Junior Research Fellowship.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    West, J. L., & Halas, N. J. (2000). Applications of nanotechnology to biotechnology: commentary. Current Opinion in Biotechnology, 11(2), 215–217.CrossRefGoogle Scholar
  2. 2.
    Mason, C., Vivekanandha, S., Misra, M., & Mohanty, A. K. (2012). Switch grass (Panicum virgatum) extract medicated green synthesis of silver nanoparticles. World Journal of Nano Science and Engineering, 2, 47–52.CrossRefGoogle Scholar
  3. 3.
    Devi, R. S., & Gayathri, R. (2014). Green synthesis of zinc oxide nanoparticles by using Hibiscus rosa-sinensis. International Journal of Current Engineering and Technology, 4(4), 2444–2446.Google Scholar
  4. 4.
    Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 16(25), 829–858.Google Scholar
  5. 5.
    Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Pandiselvi, K., Kalanjiam, M. A. R., Murugan, K., & Benelli, G. (2017). Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microbial Pathogenesis, 104, 268–277.CrossRefGoogle Scholar
  6. 6.
    Salari, Z., Ameri, A., Forootanfar, H., Adeli-Sardou, M., Jafari, M., Mehrabani, M., & Shakibaie, M. (2017). Microwave-assisted biosynthesis of zinc nanoparticles and their cytotoxic and antioxidant activity. Journal of Trace Elements in Medicine and Biology, 39, 116–123.CrossRefGoogle Scholar
  7. 7.
    Suresh, D., Nethravathi, P. C., Udayabhanu, R. H., Nagabhushana, H., & Sharma, S. C. (2015). Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Materials Science in Semiconductor Processing, 31, 446–454.CrossRefGoogle Scholar
  8. 8.
    Azizi, S., Mohamad, R., & Shahri, M. (2017). Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) Schrad: characterization and biomedical applications. Molecules.
  9. 9.
    Madan, H. R., Sharma, S. C., Udayabhanu, S. D., Vidya, Y. S., Nagabhushana, H., Rajanaik, H., Anantharaju, K. S., Prashantha, S. C., & Maiya, P. S. (2016). Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152, 404–416.CrossRefGoogle Scholar
  10. 10.
    Kumar, R. S., Ponmozhi, M., Viswanathan, P., & Nalini, N. (2002). Effect of Cassia auriculata leaf extract on lipids in rats with alcoholic liver injury. Asia Pacific Journal of Clinical Nutrition, 11(2), 157–163.CrossRefGoogle Scholar
  11. 11.
    Chanda, S., Kaneria, M., & Baravalia, Y. (2012). Antioxidant and antimicrobial properties of various polar solvent extracts of stem and leaves of four Cassia species. African Journal of Biotechnology, 11(10), 2490–2503.Google Scholar
  12. 12.
    Muthu, K., & Priya, S. (2017). Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179, 66–72.CrossRefGoogle Scholar
  13. 13.
    Padalia, H., & Chanda, S. (2017). Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using Ziziphus nummularia leaf extract. Artificial Cells, Nanomedicine Biotechnology.
  14. 14.
    Padalia, H., Baluja, S., & Chanda, S. (2017). Effect of pH on size and antibacterial activity of Salvadora oleoides leaf extract-mediated synthesis of zinc oxide nanoparticles. BioNanoScience, 7(1), 40–49.CrossRefGoogle Scholar
  15. 15.
    Perez, C., Paul, M., & Bazerque, P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biologiae et Medicine Experimentalis, 15, 113–115.Google Scholar
  16. 16.
    Rakholiya, K., & Chanda, S. (2012). In vitro interaction of certain antimicrobial agents in combinations with plant extracts against some pathogenic bacterial strains. Asian Pacific Journal of Tropical Biomedicine, 2(2), 876–880.CrossRefGoogle Scholar
  17. 17.
    Gajhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine, 5, 382–386.CrossRefGoogle Scholar
  18. 18.
    Labieniec, M., & Gabryelak, T. (2003). Effects of tannins on Chinese hamster cell line B14. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 539(1–2), 127–135.CrossRefGoogle Scholar
  19. 19.
    Moteriya, P., & Chanda, S. (2016). Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artificial Cells, Nanomedicine, and Biotechnology.
  20. 20.
    Vijayakumar, S., Vinoj, G., Malaikozhundan, B., Shanthi, S., & Vaseeharan, B. (2015). Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim. Acta Part A: Molecular Biomolecular Spectroscopy, 137, 886–891.CrossRefGoogle Scholar
  21. 21.
    Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864–870.CrossRefGoogle Scholar
  22. 22.
    Awwad, A. M., Albiss, B., & Ahmad, A. L. (2014). Green synthesis, characterization and optical properties of zinc oxide nanosheets using Olea europea leaf extract. Advanced Materials Letters, 5(9), 520–524.CrossRefGoogle Scholar
  23. 23.
    Nagajyothi, P. C., Cha, S. J., Yang, I. J., Sreekanth, T. V. M., Kim, K. J., & Shin, H. M. (2015). Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology B: Biology, 146, 10–17.CrossRefGoogle Scholar
  24. 24.
    Nair, M. G., Nirmala, M., Rekha, K., & Anukaliani, A. (2011). Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Materials Letters, 65(12), 1797–1800.CrossRefGoogle Scholar
  25. 25.
    Rao, V. S., Ramana, M. V., Satish, N. N., Anuradha, G., & Nageswari, B. (2013). Bio fabrication and characterization of zinc nanorods from Aloe vera. International Journal of Science and Research, 148–150.Google Scholar
  26. 26.
    Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.) Applied Surface Science, 345, 329–336.CrossRefGoogle Scholar
  27. 27.
    Raj, F. A. A., & Jayalakshmy, E. (2015). Effect of zinc oxide nanoparticle produce by Zingiber officinale against pathogenic bacterial. Journal of Chemical and Pharmaceutical Sciences, 8(1), 124–127.Google Scholar
  28. 28.
    Janaki, A. C., Sailatha, E., & Gunasekaran, S. (2015). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 17–22.CrossRefGoogle Scholar
  29. 29.
    Brayner, R., Iliou, R. F., Brivois, N., Djediat, S., Benedetti, M. F., & Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870.CrossRefGoogle Scholar
  30. 30.
    Baek, Y. W., & An, Y. J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO and Sb2 O3) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Science of the Total Environment, 409(8), 1603–1608.CrossRefGoogle Scholar
  31. 31.
    Sharma, S. C. (2016). ZnO nano-flowers from Carica papaya milk: degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Optik, 127, 6498–6512.CrossRefGoogle Scholar
  32. 32.
    Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. V. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78–84.CrossRefGoogle Scholar
  33. 33.
    Banoee, M., Seif, S., Nazari, Z. E., Jafari-Fesharaki, P., Shahverdi, H. R., Moballegh, A., Moghaddam, K. M., & Shahverdi, A. R. (2010). ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 557–561.CrossRefGoogle Scholar
  34. 34.
    Dobrucka, R., & Dugaszewska, J. (2015). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23(4), 517–523.CrossRefGoogle Scholar
  35. 35.
    Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram positive and Gram negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103–109.CrossRefGoogle Scholar
  36. 36.
    AbdEIhady, M. M. (2012). Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. International Journal of Carbohydrate Chemistry.
  37. 37.
    Sharma, N., Jandaik, S., & Kumar, S. (2016). Synergistic activity of doped zinc oxide nanoparticles with antibiotics: ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. Anais da Academia Brasileira de Ciências, 88(3), 1689–1698.CrossRefGoogle Scholar
  38. 38.
    Fu, G., Vary, P. S., & Lin, C. T. (2005). Anatase TiO2 nanocomposites for antimicrobial coatings. The Journal of Physical Chemistry B, 109(18), 8889–8898.CrossRefGoogle Scholar
  39. 39.
    Yamamoto, O. (2001). Influence of particle size on the antimicrobial activity of zinc oxide. International Journal of Inorganic Materials, 3(7), 643–646.CrossRefGoogle Scholar
  40. 40.
    Ann, L. C., Mahmud, S., Bakhori, S. K. M., Sirelkhatim, A., Mohamad, D., Hasan, H., Seeni, A., & Rahman, R. A. (2014). Antibacterial response of zinc oxide structures against Staphylococcus aureus, Psuedomonas aeruginosa and Streptococcus pyogenes. Ceramics International, 40(2), 2993–3001.CrossRefGoogle Scholar
  41. 41.
    Chung, I. I. I.-M., Rahuman, A. A., Marimuthu, S., Kirthi, A. V., Anbarasan, K., & Rajakumar, G. (2015). An investigation of the cytotoxicity and caspase-mediated apoptotic effect of green synthesized zinc oxide nanoparticles using Eclipta prostrata on human liver carcinoma cells. Nanomaterials, 5(3), 1317–1330.CrossRefGoogle Scholar
  42. 42.
    George, S., Pokhrel, S., Xia, T., Gilbert, B., Ji, Z., Schowalter, M., Rosenauer, A., Damoiseaux, R., Bradley, K. A., Mädler, L., & Nel, A. E. (2010). Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano, 4(1), 15–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Hemali Padalia
    • 1
  • Pooja Moteriya
    • 1
  • Sumitra Chanda
    • 1
  1. 1.Phytochemical, Pharmacological and Microbiological laboratory, Department of Biosciences (UGC-CAS)Saurashtra UniversityRajkotIndia

Personalised recommendations