, Volume 8, Issue 1, pp 179–195 | Cite as

Antimicrobial and Catalytic Potential of Soymida febrifuga Aqueous Fruit Extract-Engineered Silver Nanoparticles

  • Sowmyya T
  • Vijaya Lakshmi G


Nanotechnology has changed the outlook of researchers towards science and technology. The past decade has experienced an enormous upshot of applications of nanoparticles and nanomaterials. The enhanced surface area of the particles due to their nanosize is contributing to the wide range of applications for which nanoparticles are used. In the present study, fruits of a medicinal tree, Soymida febrifuga belonging to the family Meliaceae, were used for the synthesis of silver nanoparticles (AgNPs). The water-soluble phytochemicals extracted from the dried fruits of Soymida febrifuga were used as reducing and stabilizing agents in the reduction of Ag+ to nano-silver. The AgNPs were characterized using various instrumental methods such as UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), Nanoparticle analyzer, Scanning Electron Microscope (SEM), Energy dispersive X-ray analysis (EDAX), and Transmission Electron Microscope (TEM). The characterization studies revealed that the AgNPs were mostly spherical in shape and crystalline in nature with an average particle size of 14.27 nm. The Soymida febrifuga aqueous fruit extract-engineered AgNPs were tested for their antimicrobial activity. The AgNPs were tested for their ability to suppress the growth of two gram-positive bacterial strains, Bacillus subtilis and Escherichia coli, and two gram-negative bacterial strains, Staphylococcus aureus and Pseudomonas putrida. The inhibitory concentration of 0.54 μg/L AgNPs synthesized from the aqueous fruit extract of Soymida febrifuga is the lowest reported till date. The prepared AgNPs were used as effective catalysts in the degradation of Congo red (CR), Bromocresol green (BCG), and Bromophenol blue (BPB) dyes in presence of Sodium borohydride (NaBH4). The developed method is a facile and rapid method of green and eco-friendly synthesis of AgNPs using a minute amount of plant material.

Graphical Abstract


Green synthesis Silver nanoparticles Soymida febrifuga fruit Characterization Antimicrobial potential Catalytic potential 



The authors thank DMRL, Kanchanbagh, Hyderabad, and CFRD, Osmania University, Hyderabad, for providing the experimental facilities.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jung, J. H., Cheol Oh, H., Soo Noh, H., et al. (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. Journal of Aerosol Science, 37, 1662–1670. Scholar
  2. 2.
    Mafuné, F., Kohno, J., Takeda, Y., et al. (2000). Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. The Journal of Physical Chemistry. B, 104, 8333–8337. Scholar
  3. 3.
    Tsuji, T., Kakita, T., & Tsuji, M. (2003). Preparation of nano-size particles of silver with femtosecond laser ablation in water. Applied Surface Science, 206, 314–320. Scholar
  4. 4.
    Kim, D., Jeong, S., & Moon, J. (2006). Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology, 17, 4019–4024. Scholar
  5. 5.
    Oliveira, M. M., Ugarte, D., Zanchet, D., & Zarbin, A. J. G. (2005). Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science, 292, 429–435. Scholar
  6. 6.
    Zhang, W., Qiao, X., & Chen, J. (2007). Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299, 22–28. Scholar
  7. 7.
    Ahmad, A., Mukherjee, P., Senapati, S., et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus fusarium oxysporum. Colloids Surfaces B Biointerfaces, 28, 313–318. Scholar
  8. 8.
    Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., et al. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of bacillus licheniformis. Materials Letters, 62, 4411–4413. Scholar
  9. 9.
    Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., et al. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry, 42, 919–923. Scholar
  10. 10.
    Begum, N. A., Mondal, S., Basu, S., et al. (2009). Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surfaces B Biointerfaces, 71, 113–118. Scholar
  11. 11.
    Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638. Scholar
  12. 12.
    Santhoshkumar, T., Rahuman, A. A., Rajakumar, G., et al. (2011). Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitology Research, 108, 693–702. Scholar
  13. 13.
    Sadeghi, B., Rostami, A., & Momeni, S. S. (2015). Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 134, 326–332. Scholar
  14. 14.
    Sadeghi, B., & Gholamhoseinpoor, F. (2015). A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 134, 310–315. Scholar
  15. 15.
    Bindhu, M. R., & Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 135, 373–378. Scholar
  16. 16.
    Vilchis-Nestor, A. R., Sánchez-Mendieta, V., Camacho-López, M. A., et al. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62, 3103–3105. Scholar
  17. 17.
    Li, S., Shen, Y., Xie, A., et al. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9, 852–858. Scholar
  18. 18.
    Singhal, G., Bhavesh, R., Kasariya, K., et al. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981–2988. Scholar
  19. 19.
    Obaid, A. Y., Al-Thabaiti, S. A., El-Mossalamy, E. H., et al. (2015). Extracellular bio-synthesis of silver nanoparticles. Arabian Journal of Chemistry, 10, 226–231. Scholar
  20. 20.
    Devadiga, A., Shetty, K. V., & Saidutta, M. B. (2015). Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. International Nano Letters, 5, 205–214. Scholar
  21. 21.
    Johnson, I., & Prabu, H. J. (2015). Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora. International Nano Letters, 5, 43–51. Scholar
  22. 22.
    Kumar, R., Roopan, S. M., Prabhakarn, A., et al. (2012). Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 90, 173–176. Scholar
  23. 23.
    Moyo, M., Gomba, M., & Nharingo, T. (2015). Afzelia quanzensis bark extract for green synthesis of silver nanoparticles and study of their antibacterial activity. International Journal of Industrial Chemistry, 6, 329–338. Scholar
  24. 24.
    Jayapriya, E., & Lalitha, P. (2013). Synthesis of silver nanoparticles using leaf aqueous extract of Ocimum basilicum (L.) International Journal of ChemTech Research, 5, 2985–2992.Google Scholar
  25. 25.
    Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., & Lee, S. M. (2012). Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydrate Polymers, 88, 1077–1086. Scholar
  26. 26.
    Selvi, K., & Sivakumar, T. (2012). Isolation and characterization of silver nanoparticles from Fusarium oxysporum. International Journal of Current Microbiology and Applied Sciences, 1, 56–62.Google Scholar
  27. 27.
    Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2012). Biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanoscience and Nanotechnology, 2, 164–170. Scholar
  28. 28.
    Awwad, M. A., Salem, N. M., Ibrahim, Q. M., & Abdeen, A. O. (2015). Phytochemical fabrication and characterization of silver/silver chloride nanoparticles using Albizia Julibrissin flowers extract. Advanced Materials Letters, 6, 726–730. Scholar
  29. 29.
    Kalaiarasi, S., & Jose, M. (2017). Streptomycin loaded TiO2 nanoparticles: preparation, characterization and antibacterial applications. Journal of Nanostructure in Chemistry, 7, 47–53. Scholar
  30. 30.
    Abbasi, Z., Feizi, S., Taghipour, E., & Ghadam, P. (2017). Green synthesis of silver nanoparticles using aqueous extract of dried Juglans regia green husk and examination of its biological properties. Green Processing and Synthesis.
  31. 31.
    Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran, 19, 2023–2028. Scholar
  32. 32.
    Sowmyya, T., & Vijayalakshmi, G. (2017). Spectroscopic investigation on catalytic and bactericidal properties of biogenic silver nanoparticles synthesized using Soymida febrifuga aqueous stem bark extract. Journal of Environmental Chemical Engineering.
  33. 33.
    Araujo, C. S. T., Carvalho, D. C., Rezende, H. C., et al. (2013). Bioremediation of waters contaminated with heavy metals using Moringa oleifera seeds as biosorbent. Applied Bioremediation - Active and Passive Approaches.
  34. 34.
    Singh, R., Sahu, S. K., & Thangaraj, M. (2014). Biosynthesis of silver nanoparticles by marine invertebrate (Polychaete) and assessment of its efficacy against human pathogens. Journal of Nanoparticles, 2014, 1–7. Scholar
  35. 35.
    Yoganarasimhan SN (1996). Medicinal plants of India, vol 1. Karnataka: Interline Publishing.Google Scholar
  36. 36.
    Sowmyya, T., & Vijayalakshmi, G. (2016). Green synthesis and characterization of silver nanoparticles using Soymida febrifuga aqeuous leaf extract. World Journal of Pharmaceutical Sciences, 5, 786–805.Google Scholar
  37. 37.
    Sun, Q., Cai, X., Li, J., et al. (2014). Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 226–231. Scholar
  38. 38.
    Christensen, L., Vivekanandhan, S., Misra, M., & Mohanty, A. K. (2011). Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Advanced Materials Letters, 2, 429–434. Scholar
  39. 39.
    Preetha D, Arun R, Kumari P, Aarti C (2013). Synthesis and characterization of silver nanoparticles using cannonball leaves and its cytotoxic activity against Mcf-7 cell line. Journal of Nanotechnology, 2013.
  40. 40.
    Balashanmugam, P., & Kalaichelvan, P. T. (2015). Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. International Journal of Nanomedicine, 10, 87–97. Scholar
  41. 41.
    Vanaja, M., Paulkumar, K., Baburaja, M., et al. (2014). Degradation of methylene blue using biologically. Bioinorganic Chemistry and Applications, 2014, 1–8. Scholar
  42. 42.
    Honary, S., Barabadi, H., Gharaei-Fathabad, E., & Naghibi, F. (2013). Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 12, 7–11. Scholar
  43. 43.
    Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Science, 9, 217–227. Scholar
  44. 44.
    Das, B., Dash, S. K., Mandal, D., et al. (2015). Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry.
  45. 45.
    Mollick, M. M. R., Rana, D., Dash, S. K., et al. (2015). Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian Journal of Chemistry.
  46. 46.
    Kouvaris, P., Delimitis, A., Zaspalis, V., et al. (2012). Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters, 76, 18–20. Scholar
  47. 47.
    Raut, R. W., Mendhulkar, V. D., & Kashid, S. B. (2014). Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. Journal of Photochemistry and Photobiology B: Biology, 132, 45–55. Scholar
  48. 48.
    Dhand, V., Soumya, L., Bharadwaj, S., et al. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36–43. Scholar
  49. 49.
    Maiti, S., Purakayastha, S., & Ghosh, B. (2007). Production of low-cost carbon adsorbents from agricultural wastes and their impact on dye adsorption. Chemical Engineering Communications, 195, 386–403. Scholar
  50. 50.
    Kolya H, Maiti P, Pandey A, Tripathy T (2015). Green synthesis of silver nanoparticles with antimicrobial and azo dye (congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. Journal of Analytical Science and Technology, 6, 33. doi:
  51. 51.
    Choudhary, B. C., Paul, D., Gupta, T., et al. (2017). Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. Journal of Environmental Sciences (China), 55, 236–246. Scholar
  52. 52.
    Vidhu, V. K., & Philip, D. (2014). Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron, 56, 54–62. Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Forensic Science Unit, Department of ChemistryUniversity College of Science, Osmania UniversityHyderabadIndia
  2. 2.Department of ChemistryUniversity College for Women, KotiHyderabadIndia

Personalised recommendations