Skip to main content
Log in

Network-Driven Activity and Neuronal Excitability in Hippocampus of Neonatal Rats with Prenatal Hyperhomocysteinemia

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Maternal hyperhomocysteinemia (HHCy) correlated with a number of complications such as abruption placentae, preeclampsia syndrome, in utero fetal death and fetal neural tube defects, cognitive impairment, and neurodegeneration during postnatal development. In the present study, we investigated the effects of prenatal HHCy on electrophysiological features and spontaneous network activity of neurons in hippocampus of rats of the first postnatal week. The analysis of intrinsic electrophysiological properties of pyramidal neurons has shown the decrease of the membrane capacitance and the threshold of generation of action potentials in rats with prenatal HHCy without alteration of the input resistance and resting membrane potential. In trains of action potentials elicited with prolonged current injections, an increase of interspike intervals and a broadening of action potentials during repetitive firing were observed in control neurons. In the neurons of pups with prenatal HHCy, the changes in interspike intervals were not significant and the broadening of action potentials in train was less pronounced. Using extracellular field potential recordings from the hippocampal slices, we found that the network activity in hippocampal slices from rats with prenatal HHCy displayed several abnormalities including the increase in overall neuronal firing and reduction of frequency of giant depolarizing potentials in CA3 regions. We conclude that the increased neuronal excitability and impairment of network activity in hippocampus can underlie neurodevelopmental abnormalities and hyperexcitability in prenatal HHCy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Troen, A. M. (2005). The central nervous system in animal models of hyperhomocysteinemia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29(7), 1140–1151.

    Article  Google Scholar 

  2. Perla-Kajan, J., Twardowski, T., & Jakubowski, H. (2007). Mechanisms of homocysteine toxicity in humans. Amino Acid, 32(4), 561–572.

    Article  Google Scholar 

  3. Welchv, G. N., & Loscalzo, J. (1998). Homocysteine and atherothrombosis. The New England Journal of Medicine, 338(15), 1042–1052.

    Article  Google Scholar 

  4. Boldyrev, A. (2009). Molecular mechanisms of homocysteine toxicity and possible protection against hyperhomocysteinemia. Biochemistry (Moscow), 74, 589–598.

    Article  Google Scholar 

  5. Lutz, U. C. (2008). Alterations in homocysteine metabolism among alcohol dependent patients—clinical pathobiochemical and genetic aspects. Current Drug Abuse Reviews, 1, 47–55.

    Article  Google Scholar 

  6. Langmeier, M., Folbergrova, J., Haugvicova, R., Pokorny, J. L., & Mares, P. (2003). Neuronal cell death in hippocampus induced by homocysteic acid in immature rats. Epilepsia, 44(3), 299–304.

    Article  Google Scholar 

  7. Gaifullina, A. S., Yakovlev, A. V., Mustafina, A. N., Weiger, T. M., Hermann, A., & Sitdikova, G. F. (2016). Homocysteine augments BK channel activity and decreases exocytosis of secretory granules in rat GH3 cells. FEBS Letters, 590, 3375–3384.

    Article  Google Scholar 

  8. Makhro, A. V., Mashkina, A. P., Solenaya, O. A., Trunova, O. A., Tyulina, O. V., Bulygina, E. R., & Boldyrev, A. A. (2008). Carnosine protects cells from oxidative stress induced by hyperhomocysteinemia. Neurochemical Journal, 2(3), 202–208.

    Article  Google Scholar 

  9. Abushik, P. A., Niittykoski, M., Giniatullina, R., Shakirzyanova, A., Bart, G., Fayuk, D., Sibarov, D. A., Antonov, S. M., & Giniatullin, R. (2014). The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. Journal of Neurochemistry, 129(2), 267–274.

    Article  Google Scholar 

  10. Algaidi, S. A., Christie, L. A., Jenkinson, A. M., Whalley, L., Riedel, G., & Platt, B. (2006). Long-term homocysteine exposure induces alterations in spatial learning, hippocampal signalling and synaptic plasticity. Experimental Neurology, 197(1), 8–21.

    Article  Google Scholar 

  11. Schaub C, Uebachs M, Beck H,·Linnebank M (2013) Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons. Experimental Brain Research, 225, 527–534.

    Article  Google Scholar 

  12. Arutjunyan, A., Kozina, L., Stvolinskiy, S., Ye, B., Mashkina, A., & Khavinson, V. (2012). Pineal on protects the rat offspring from prenatal hyperhomocysteinemia. International Journal of Clinical and Experimental Medicine, 5(2), 179–185.

    Google Scholar 

  13. Gerasimova, E., Yakovleva, O., Burkanova, G., Ziyatdinova, G., Khaerdinov, N., & Sitdikova, G. (2017). Effects of maternal hyperhomocysteinemia on the early physical development and neurobehavioral maturation of rat offspring. BioNanoScience, 7, 155–158.

    Article  Google Scholar 

  14. Baydas, G., Koz, S. T., Tuzcu, M., Nedzvetsky, V. S., & Etem, E. (2007). Effects of maternal hyperhomocysteinemia induced by high methionine diet on the learning and memory performance in offspring. International Journal of Developmental Neuroscience, 25, 133–139.

    Article  Google Scholar 

  15. Blaise, S. A., Nédélec, E., Schroeder, H., Alberto, J. M., Bossenmeyer-Pourié, C., Guéant, J. L., et al. (2007). Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. The American Journal of Pathology, 170(2), 667–679.

    Article  Google Scholar 

  16. Kress, G. J., Dowling, M. J., Meeks, J. P., & Mennerick, S. (2008). High threshold, proximal initiation, and slow conduction velocity of action potentials in dentate granule neuron mossy fibers. Journal of Neurophysiology, 100(1), 281–291.

    Article  Google Scholar 

  17. Lee, P. T., Lowinsohn, D., & Compton, R. G. (2014). Simultaneous detection of homocysteine and cysteine in the presence of ascorbic acid and glutathione using a nanocarbon modified electrode. Electroanalysis, 26, 1488–1496.

    Article  Google Scholar 

  18. Ben-Ari, Y., Khalilov, I., Kahle, K. T., & Cherubini, E. (2012). The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. The Neuroscientist, 18(5), 467–486.

    Article  Google Scholar 

  19. Sanchez, J. T., Wang, Y., Rube, E. W., & Barria, A. (2010). Development of glutamatergic synaptic transmission in binaural auditory neurons. Journal of Neurophysiology, 104(3), 1774–1789.

    Article  Google Scholar 

  20. Bandeira, F., Lent, R., & Herculano-Houzel, S. (2009). Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. PNAS, 106(33), 14108–14113.

    Article  Google Scholar 

  21. Mukhamedyarov, M. A., Minlebaev, M. G., & Zefirov, A. L. (2004). Effect of blockers of potential-dependent and calcium-activated K+-channels on facilitation of neuromuscular transmission. Bulletin of Experimental Biology and Medicine, 137(4), 323–326.

    Article  Google Scholar 

  22. Zakharov, A., Lotfullina, N., & Khazipov, R. (2017). Impairments to the giant depolarizing potentials after the third trimester equivalent ethanol exposure in the neonatal rat. BioNaoScience, 6(4), 523–527.

    Article  Google Scholar 

  23. Bolton, A. D., Phillips, M. A., & Constantine-Paton, M. (2013). Homocysteine reduces NMDAR desensitization and differentially modulates peak amplitude of NMDAR currents, depending on GluN2 subunit com- position. Journal of Neurophysiology, 110, 1567–1582 2013Sibarov 2017.

    Article  Google Scholar 

  24. Sibarov DA, Abushik PA, Giniatullin R, Antonov SM (2017) GluN2A subunit-containing NMDA receptors are the preferential neuronal targets of homocysteine. Frontiers in Cellular Neuroscience, 10(246), https://doi.org/10.3389/fncel.2016.00246.

  25. Chang, L. R., Liu, J. P., Zhang, N., Wang, Y. J., Gao, X. L., & Wu, Y. (2009). Different expression of NR2b and PSD-95 in rat hippocampal subregions during postnatal development. Microscopy Research and Technique, 72, 517–524.

    Article  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation no. 14-15-00618.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey V. Yakovlev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.V., Kurmashova, E., Zakharov, A. et al. Network-Driven Activity and Neuronal Excitability in Hippocampus of Neonatal Rats with Prenatal Hyperhomocysteinemia. BioNanoSci. 8, 304–309 (2018). https://doi.org/10.1007/s12668-017-0450-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0450-y

Keywords

Navigation