, Volume 8, Issue 1, pp 299–303 | Cite as

PEG-Coated Superparamagnetic Dysprosium-Doped Fe3O4 Nanoparticles for Potential MRI Imaging

  • Timur Sh. Atabaev


In recent years, superparamagnetic nanoparticles (NPs) have attracted considerable attention due to their high potential for biomedical applications. This study describes a facile preparation method of superparamagnetic polyethylene glycol (PEG)-coated dysprosium-doped Fe3O4 NPs for potential magnetic resonance imaging (MRI) applications. The structure, morphology, and magnetic properties of the dysprosium-doped Fe3O4 NPs were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and quantum design vibrating sample magnetometer (QD-VSM), respectively. The MRI imaging ability of the dysprosium-doped Fe3O4 NPs was assessed using a 1.5-T small animal MRI scanner. In addition, pilot studies were performed to examine the toxicity of the PEG-coated dysprosium-doped Fe3O4 NPs. The obtained results suggested that prepared NPs could be used for potential T2-weighted MRI imaging.


Dysprosium-doped Fe3O4 Superparamagnetic nanoparticles MRI imaging Toxicity 



We would like to thank Ms. Gulnoza Urmanova (Department of Biotechnology, NUUz) for cytotoxicity measurements. We would also like to thank the funding grant provided by NU to conduct the preliminary research.


  1. 1.
    Atabaev, T. S. (2016). Multimodal inorganic nanoparticles for biomedical applications. In A. M. Grumezescu (Ed.), Nanobiomaterials in medical imaging: applications of nanobiomaterials (pp. 253–278). Amsterdam: Elsevier Inc..CrossRefGoogle Scholar
  2. 2.
    Lv, Y., Yang, Y., Fang, J., et al. (2015). Size dependent magnetic hyperthermia of octohedral Fe3O4 nanoparticles. RSC Advances, 5, 76764–76771.CrossRefGoogle Scholar
  3. 3.
    Mustapic, M., Hossain, M. S. A., Horvat, J., et al. (2016). Controlled delivery of drug adsorbed onto porous Fe3O4 structures by application of AC/DC magnetic fields. Microporous and Mesoporous Materials, 226, 243–250.CrossRefGoogle Scholar
  4. 4.
    Atabaev, T. S., Kim, H. K., & Hwang, Y. H. (2013). Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer. Nanoscale Research Letters, 8, 357.CrossRefGoogle Scholar
  5. 5.
    Lu, W., Ling, M., Jia, M., Huang, P., Li, C., & Yan, B. (2014). Facile synthesis and characterization of polyethylenimine-coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Molecular Medicine Reports, 9, 1080–1084.CrossRefGoogle Scholar
  6. 6.
    German, S. V., Navolokin, N. A., Kuznetsova, N. R., et al. (2015). Liposomes loaded with hydrophilic magnetite nanoparticles: preparation and application as contrast agents for magnetic resonance imaging. Colloids and Surfaces, B: Biointerfaces, 135, 109–115.CrossRefGoogle Scholar
  7. 7.
    Ozdemir, A., Ekiz, M. S., Dilli, A., Guler, M. O., & Tekinay, A. B. (2016). Amphiphilic peptide coated superparamagnetic iron oxide nanoparticles for in vivo MR tumor imaging. RSC Advances, 6, 45135–45146.CrossRefGoogle Scholar
  8. 8.
    Wang, Y. X. J. (2015). Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World Journal of Gastroenterology, 21, 13400–13402.CrossRefGoogle Scholar
  9. 9.
    Wang, Z., Liu, J., Li, T., Liu, J., & Wang, B. (2014). Controlled synthesis of of MnFe2O4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T1/T2-weighted MRI contrast agents. Journal of Materials Chemistry B, 2, 4748–4753.CrossRefGoogle Scholar
  10. 10.
    Barcena, C., Sra, A. K., Chaubey, G. S., Khemtong, C., Liu, J. P., & Gao, J. (2008). Zinc ferrite nanoparticles as MRI contrast agents. Chemical Communications, 2008, 2224–2226.CrossRefGoogle Scholar
  11. 11.
    Bloemen, M., Vandendriessche, S., Goovaerts, V., et al. (2014). Synthesis and characterization of holmium doped iron oxide nanoparticles. Materials, 7, 1155–1164.CrossRefGoogle Scholar
  12. 12.
    Huan, W., Ji, G., Cheng, C., An, J., Yang, Y., & Liu, X. (2015). Preparation, characterization of high-luminescent and magnetic Eu3+, Dy3+ doped superparamagnetic nano-Fe3O4. Journal of Nanoscience and Nanotechnology, 15, 1780–1788.CrossRefGoogle Scholar
  13. 13.
    Xu, W., Kattel, K., Park, J. Y., Chang, Y., Kim, T. J., & Lee, G. H. (2012). Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Physical Chemistry Chemical Physics, 14, 12687–12700.CrossRefGoogle Scholar
  14. 14.
    Thapa, B., Diaz-Diestra, D., Beltran-Huarac, J., Weiner, B. R., & Morell, G. (2017). Enhanced MRI T2 relaxivity in contrast-probed anchor-free PEGylated iron oxide nanoparticles. Nanoscale Research Letters, 12, 312.CrossRefGoogle Scholar
  15. 15.
    Atabaev, T. S., Lee, J. H., Lee, J. J., et al. (2013). Mesoporous silica with fibrous morphology: a multifunctional core-shell platform for biomedical applications. Nanotechnology, 24, 345603.CrossRefGoogle Scholar
  16. 16.
    Atabaev, T. S., Shin, Y. C., Song, S. J., Han, D. W., & Hong, N. H. (2017). Toxicity and T2-weighted magnetic resonance imaging potentials of holmium oxide nanoparticles. Nanomaterials, 7, 216.CrossRefGoogle Scholar
  17. 17.
    Karimzadeh, I., Aghazadeh, M., Doroudi, T., et al. (2017). Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: a facile and scalable preparation route based on cathodic electrochemical deposition method. Adv Phys Chem, 2017, 9437487.CrossRefGoogle Scholar
  18. 18.
    Atabaev, T. S., Lee, J. H., Han, D. W., Kim, H. K., & Hwang, Y. H. (2014). Ultrafine PEG-capped gadolinia nanoparticles: cytotoxicity and potential biomedical applications for MRI and luminescent imaging. RSC Advances, 4, 34343–34349.CrossRefGoogle Scholar
  19. 19.
    Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M., & Weinmann, H. J. (2005). Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investigative Radiology, 40, 715–724.CrossRefGoogle Scholar
  20. 20.
    Atabaev, T. S., Lee, J. H., Shin, Y. C., et al. (2017). Eu, Gd-codoped yttria nanoprobes for optical and T1-weighted magnetic resonance imaging. Nanomaterials, 7, 35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry, School of Science and TechnologyNazarbayev UniversityAstanaKazakhstan

Personalised recommendations