Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 154–165 | Cite as

Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite

  • Mehmet Onur Aydogdu
  • Alexandra Elena Oprea
  • Roxana Trusca
  • Adrian Vasile Surdu
  • Anton Ficai
  • Alina Maria Holban
  • Florin Iordache
  • Andrei Viorel Paduraru
  • Diana Georgiana Filip
  • Esra Altun
  • Nazmi Ekren
  • Faik Nuzhet Oktar
  • Oguzhan Gunduz
Article

Abstract

In this study, electrospinning technique has been utilized to prepare composite nanofiber mats of polyurethane (PU)/zirconium dioxide (ZrO2) and PU/zeolite, consisted by antimicrobial properties. Tensile strength measurement test was performed for the mechanical analysis of the nanofibers. Scanning electron microscopy (SEM) were performed for displaying the morphological features of the fiber structure. XRD tests were performed for revealing the chemical structure. Antimicrobial tests were also performed to display antimicrobial effects of the produced materials. In vitro test was also performed to determine cytotoxicity and biocompatibility. The present PU/ZrO2 and PU/zeolite composite nanofibers resulted with improved mechanical properties and good antimicrobial properties against either their pure forms or other studies. Cell proliferation and viability also increased significantly with increase in zeolite and ZrO2 ratio. It is concluded that this composition provides a novel alternative as an antimicrobial material which can be suitable as a wound dressing or a coating material for various healthcare engineering applications.

Keywords

Polyurethane Zirconia Zeolite Electrospinning Nanofibers Antimicrobial activity 

Notes

Acknowledgements

This study has been founded by BAPKO, Marmara University, grant no. FEN-B-080415-0117. Additionally, scanning electron microscopy analyses were possible due to EU funding grant POSCCE-A2-O2.2.1-2013-1/Priority Direction 2, Project No. 638/12.03.2014, code SMIS-CSNR 48652.

References

  1. 1.
    Greiner, A., & Wendorff, J. H. (2007). Electrospinning a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie, International Edition, 46, 5670–5703.CrossRefGoogle Scholar
  2. 2.
    Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49, 603–5621.CrossRefGoogle Scholar
  3. 3.
    Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). M. Review: fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science and Engineering: C, 46, 166–176.CrossRefGoogle Scholar
  4. 4.
    Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. J., Park, C.-H., & Kim, C. S. (2012). One step fabrication of antibacterial silver nanoparticles poly ethylene oxide polyurethane bicomponent hybrid nanofibrous mat by dual spinneret electrospinning. Materials Chemistry and Physics, 134, 557–561.CrossRefGoogle Scholar
  5. 5.
    Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.CrossRefGoogle Scholar
  6. 6.
    Nirmala, R., Jeon, K. S., & Lim, B. H. (2013). Preparation and characterization of copper oxide particles incorporated polyurethane composite nanofibers by electrospinning. Ceramics International, 39, 9651–9658.CrossRefGoogle Scholar
  7. 7.
    Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. R., Park, C.-H., Kim, D. W., & Kim, C. S. (2012). Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chemical Engineering Journal, 197, 41–48.CrossRefGoogle Scholar
  8. 8.
    Jangra, S. L., Stalin, K., Dilbaghi, N., Kumar, S., Tawale, J., Singh, S. P., & Pasricha, R. (2012). Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. Journal of Nanoscience and Nanotechnology, 12, 7105–7112.CrossRefGoogle Scholar
  9. 9.
    Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. J., Park, C.-H., Kim, D. W., & Kim, C. S. (2014). Electrospun ZrO2 fibers obtained from polyvinyl alcohol/zirconium n-propoxide composite fibers processed through halide free sol–gel route using acetic acid as a stabilizer. Materials Letters, 115, 64–67.CrossRefGoogle Scholar
  10. 10.
    Hecht, K. (2010). Application of natural zeolites in medicine and cosmetology – ZEOMEDCOS (pp. 7–46). Baku London: SWB.Google Scholar
  11. 11.
    Pavelic K and Hadz ija M (2003) Medical Applications of Ruder Bosˇkovic’ Institute, Zagreb.Google Scholar
  12. 12.
    Lubasova, D., & Barbora, S. (2014). Antibacterial efficiency of nanofiber membranes with biologically active nanoparticles. Bali: International Conference on Agriculture, Biology and Environmental Sciences (ICABES'14).Google Scholar
  13. 13.
    Singhn, S., Singh, V., Vijayakumar, M., & Prasad, V. V. B. (2013). Dual fiber behavior of polyvinyl alcohol/zirconium n-propoxide composite fibrous mats prepared via electrospinning. Ceramics International, 39, 5031–5037.CrossRefGoogle Scholar
  14. 14.
    Rădulescu, M., Andronescu, E., Holban, A. M., Vasile, B. S., Iordache, F., Mogoantă, L., Mogoșanu, G. D., Grumezescu, A. M., Georgescu, M., & Chifiriuc, M. C. (2016). Antimicrobial nanostructured bioactive coating based on Fe3O4 and patchouli oil for wound dressing. Metals, 6(5), 103.CrossRefGoogle Scholar
  15. 15.
    Rădulescu, D., et al. (2016). Mesoporous silica coatings for cephalosporin active release at the bone-implant interface. Applied Surface Science, 374, 165–171.CrossRefGoogle Scholar
  16. 16.
    Powers, J. M., & Sakaguchi, R. L. (2006). Resin composite restorative material (p. 193). USA: Mosby Elsevier Craig's Restorative Dental Materials.Google Scholar
  17. 17.
    Trovati, G., Sanches, E. A., Neto, S. C., Mascarenhas, Y. P., & Chierice, G. O. (2010). Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science, 115, 263–268.CrossRefGoogle Scholar
  18. 18.
    Dias, R. C. M., Góesb, A. M., Oréficea, R. L., Ayresa, E., & Serakides, R. (2010). Degradable polyurethane nanoparticles containing vegetable oils. Materials Research, 13, 211–218.CrossRefGoogle Scholar
  19. 19.
    Zhang, D., Zhao, S., Zhang, Y., & Hou, Y. (2015). One dimensional Ti-doped zirconia wires prepared by electrospinning: characterization, morphology and photophysical features. Journal of Luminescence, 157, 338–343.CrossRefGoogle Scholar
  20. 20.
    Anis, S. F., Khalil, A., Singaravel, G., & Hashaikeh, R. (2016). A review on the fabrication of zeolite and mesoporous inorganic nanofibers formation for catalytic applications. Microporous and Mesoporous Materials, 223, 176–192.CrossRefGoogle Scholar
  21. 21.
    Chen, S., Ge, L., Mueller, A., Carlson, M. A., Teusink, M. J., Shuler, F. D., & Xie, J. (2017). Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver. Nanomedicine: Nanomedicine Nanotechnology Biology Medicine, 13, 1435–1445.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mehmet Onur Aydogdu
    • 1
    • 2
  • Alexandra Elena Oprea
    • 1
    • 3
  • Roxana Trusca
    • 3
  • Adrian Vasile Surdu
    • 3
  • Anton Ficai
    • 1
    • 3
  • Alina Maria Holban
    • 4
  • Florin Iordache
    • 5
  • Andrei Viorel Paduraru
    • 1
    • 3
  • Diana Georgiana Filip
    • 1
    • 6
  • Esra Altun
    • 1
    • 2
  • Nazmi Ekren
    • 1
    • 7
  • Faik Nuzhet Oktar
    • 1
    • 8
  • Oguzhan Gunduz
    • 1
    • 8
  1. 1.Advanced Nanomaterials Research Laboratory, Department of Metallurgical and Materials EngineeringMarmara UniversityIstanbulTurkey
  2. 2.Department of Metallurgical and Materials Engineering, Master of Science, Institute of Pure and Applied SciencesMarmara UniversityIstanbulTurkey
  3. 3.Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials ScienceUniversity Politehnica of BucharestBucureștiRomania
  4. 4.Microbiology Immunology Department, Faculty of BiologyUniversity of BucharestBucharestRomania
  5. 5.Department of Fetal and Adult Stem Cell TherapyInstitute of Cellular Biology and Pathology of Romanian Academy, “Nicolae Simionescu”BucharestRomania
  6. 6.Department of Organic Chemistry, Faculty of Applied Chemistry and Materials SciencePolitehnica University of BucharestBucharestRomania
  7. 7.Department of Electric-Electronic Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey
  8. 8.Department of Metallurgical and Materials Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey

Personalised recommendations