Skip to main content

Advertisement

Log in

Generation and Characterization of Cell-Derived Microvesicles from HUVECs

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Microvesicles (MVs) are of great interest for the biomedical field as novel diagnostics biomarkers. MV research, however, is still impaired by the lack of standardization of the analysis methods. In this study, our goals were to develop a method for the reproducible generation of an MV population from cell culture, to compare the sizing of MVs by atomic force microscopy (AFM) and nanoparticle tracking analysis (NTA) and to develop an MV array allowing the sizing and phenotyping of MVs simultaneously with the AFM as a read-out. MVs were isolated from apoptotic human umbilical vein endothelial cells (HUVECs) and had a mean size of 115 nm as measured by AFM and of 197 nm as measured by NTA. MVs isolated from apoptotic and control HUVECs could not be distinguished by their size (p > 0.05). HUVECs and their released MVs shared the same phenotype (positive for endothelial markers CD31 and CD146 and negative for platelet marker CD42b). Our method generated MVs with a concentration which was reproducible within a range of 20%. This is a relevant model system for medical applications. The size of the MVs was larger as measured using NTA compared to that using AFM. The MV array was efficient to characterize the surface markers of MVs and has the potential to identify the cellular origins of MVs in patient samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aatonen, M.T., Öhman, T., Nyman, T.A., Laitinen, S., Grönholm, M., & Siljander, P.R.-M. (2014). Isolation and characterization of platelet-derived extracellular vesicles. Journal of Extracellular Vesicles, 3, 24692.

    Article  Google Scholar 

  2. Angelot, F., Seillès, E., Biichlé, S., Berda, Y., Gaugler, B., Plumas, J., Chaperot, L., Dignat-George, F., Tiberghien, P., Saas, P., & Garnache-Ottou, F. (2009). Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases. Haematologica, 94 (11), 1502–12.

    Article  Google Scholar 

  3. Ashcroft, B.A., de Sonneville, J., Yuana, Y., Osanto, S., Bertina, R., Kuil, M.E., & Oosterkamp, T.H. (2012). Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomedical microdevices, 14(4), 641–9.

    Article  Google Scholar 

  4. Ayers, L., Kohler, M., Harrison, P., Sargent, I., Dragovic, R., Schaap, M., Nieuwland, R., Brooks, S.A., & Ferry, B. (2011). Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thrombosis Research, 127(4), 370–377.

    Article  Google Scholar 

  5. Bagley, R.G., Walter-Yohrling, J., Cao, X., Weber, W., Simons, B., Cook, B.P., Chartrand, S.D., Wang, C., Madden, S.L., & Teicher, B.A. (2003). Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells. Cancer research, 63(18), 5866–5873.

    Google Scholar 

  6. Bardin, N. (2001). Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood, 98(13), 3677–3684.

    Article  Google Scholar 

  7. Bertrand, R., Solary, E., O’Connor, P., Kohn, K.W., & Pommier, Y. (1994). Induction of a common pathway of apoptosis by staurosporine. Experimental cell research, 211(2), 314–321.

    Article  Google Scholar 

  8. Boulanger, C.M., Amabile, N., & Tedgui, A. (2006). Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension, 48(2), 180–186.

    Article  Google Scholar 

  9. Burger, D., Schock, S., Thompson, C.S., Montezano, A.C., Hakim, A.M., & Touyz, R.M. (2013). Microparticles: biomarkers and beyond. Clinical science (London England : 1979), 124(7), 423–41.

    Article  Google Scholar 

  10. Buzas, E.I., György, B., Nagy, G., Falus, A., & Gay, S. (2014). Emerging role of extracellular vesicles in inflammatory diseases. Nature Reviews. Rheumatology, 10(6), 356–64.

    Article  Google Scholar 

  11. Chandler, W.L., Yeung, W., & Tait, J.F. (2011). A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. Journal of thrombosis and haemostasis, 9(6), 1216–24.

    Article  Google Scholar 

  12. Chironi, G.N., Boulanger, C.M., Simon, A., Dignat-George, F., Freyssinet, J.-M., & Tedgui, A. (2009). Endothelial microparticles in diseases. Cell and tissue research, 335(1), 143–51.

    Article  Google Scholar 

  13. Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends in cell biology, 19(2), 43–51.

    Article  Google Scholar 

  14. Combes, V., Simon, A.C., Grau, G.E., Arnoux, D., Camoin, L., Sabatier, F., Mutin, M., Sanmarco, M., Sampol, J., & Dignat-George, F. (1999). In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. The Journal of clinical investigation, 104(1), 93–102.

    Article  Google Scholar 

  15. Coumans, F.A.W., van der Pol, E., Böing, A.N., Hajji, N., Sturk, G., van Leeuwen, T.G., & Nieuwland, R. (2014). Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. Journal of Extracellular Vesicles, 3, 25922.

    Article  Google Scholar 

  16. Dignat-George, F., & Boulanger, C.M. (2011). The many faces of endothelial microparticles. Arteriosclerosis, thrombosis, and vascular biology, 31(1), 27–33.

    Article  Google Scholar 

  17. Dragovic, R.A., Gardiner, C., Brooks, A.S., Tannetta, D.S., Ferguson, D.J.P., Hole, P., Carr, B., Redman, C.W.G., Harris, A.L., Dobson, P.J., Harrison, P., & Sargent, I.L. (2011). Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine : nanotechnology, biology, and medicine, 7(6), 780–788.

    Article  Google Scholar 

  18. Eitan, E., Zhang, S., Witwer, K.W., & Mattson, M.P. (2015). Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth. Journal of Extracellular Vesicles, 4, 26373.

    Article  Google Scholar 

  19. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495–516.

    Article  Google Scholar 

  20. Fernandes, E., Martins, V.C., Nóbrega, C., Carvalho, C.M., Cardoso, F.A., Cardoso, S., Dias, J., Deng, D., Kluskens, L.D., Freitas, P.P., & Azeredo, J. (2014). A bacteriophage detection tool for viability assessment of Salmonella cells. Biosensors & bioelectronics, 52, 239–46.

    Article  Google Scholar 

  21. Gardiner, C., Ferreira, Y.J, Dragovic, R.A, Redman, C.W.G., & Sargent, I.L. (2013). Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. Journal of extracellular vesicles, 2, 19671.

    Article  Google Scholar 

  22. Gardiner, C., Harrison, P., Belting, M., Böing, A., Campello, E., Carter, B.S., Collier, M.E., Coumans, F., Ettelaie, C., van Es, N., Hochberg, F.H., Mackman, N., Rennert, R.C., Thaler, J., Rak, J., & Nieuwland, R. (2015). Extracellular vesicles, tissue factor, cancer and thrombosis—discussion themes of the ISEV 2014 Educational Day. Journal of extracellular vesicles, 4, 26901.

    Article  Google Scholar 

  23. Gelderman, M.P., & Simak, J. (2008). Flow cytometric analysis of cell membrane microparticles. Methods in molecular biology, 484, 79–93.

    Article  Google Scholar 

  24. Gercel-Taylor, C., Atay, S., Tullis, R.H., Kesimer, M., & Taylor, D.D. (2012). Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Analytical biochemistry, 428(1), 44–53.

    Article  Google Scholar 

  25. Gheldof, D., Hardij, J., Cecchet, F., Chatelain, B., Dogné, J.-M., & Mullier, F. (2013). Thrombin generation assay and transmission electron microscopy: a useful combination to study tissue factor-bearing microvesicles. Journal of Extracellular Vesicles, 2, 19728.

    Article  Google Scholar 

  26. Gong, J., Jaiswal, R., Dalla, P., Luk, F., & Bebawy, M. (2015). Microparticles in cancer a review of recent developments and the potential for clinical application. Seminars in Cell & Developmental Biology, 40, 35–40.

    Article  Google Scholar 

  27. Hardij, J., Cecchet, F., Berquand, A., Gheldof, D., Chatelain, C., Mullier, F., Chatelain, B., & Dogné J.-M. (2013). Characterisation of tissue factor-bearing extracellular vesicles with AFM: comparison of air-tapping-mode AFM and liquid Peak Force AFM. Journal of Extracellular Vesicles, 2, 21045.

    Article  Google Scholar 

  28. Hessler, J.A., Budor, A., Putchakayala, K., Mecke, A., Rieger, D., Banaszak Holl, M.M., Orr, B.G., Bielinska, A., Beals, J., & Baker, J. (2005). Atomic force microscopy study of early morphological changes during apoptosis. Langmuir, 21(20), 9280–9286.

    Article  Google Scholar 

  29. Issman, L., Brenner, B., Talmon, Y., & Aharon, A. (2013). Cryogenic transmission electron microscopy nanostructural study of shed microparticles. PloS one, 8(12), e83680.

    Article  Google Scholar 

  30. Jørgensen, M., Bæk, R., Pedersen, S., Søndergaard, E.K.L., Kristensen, S.R., & Varming, K. (2013). Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. Journal of extracellular vesicles, 2, 20920.

    Article  Google Scholar 

  31. Jørgensen, M.M., Bæk, R., & Varming, K. (2015). Potentials and capabilities of the extracellular vesicle (EV) array. Journal of extracellular vesicles, 4, 26048.

    Article  Google Scholar 

  32. Kabir, J., Lobo, M., & Zachary, I. (2002). Staurosporine induces endothelial cell apoptosis via focal adhesion kinase dephosphorylation and focal adhesion disassembly independent of focal adhesion kinase proteolysis. Biochemical Journal, 367(1), 145–155.

    Article  Google Scholar 

  33. Kim, K.S., Cho, C.H., Park, E.K., Jung, M.-H., Yoon, K.-S., & Park, H.-K. (2012). AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells. PloS one, 7(1), e30066.

    Article  Google Scholar 

  34. Laffont, B., Corduan, A., Plé, H., Duchez, A.-C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2 microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–61.

    Article  Google Scholar 

  35. Latham, S.L., Tiberti, N., Gokoolparsadh, N., Holdaway, K., Couraud, P.O. , Grau, G.E.R., & Combes, V. (2015). Immuno-analysis of microparticles: probing at the limits of detection. Scientific reports, 5, 16314.

    Article  Google Scholar 

  36. Lawrie, A.S., Albanyan, A., Cardigan, R.A., Mackie, I.J., & Harrison, P. (2009). Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox sanguinis, 96(3), 206–212.

    Article  Google Scholar 

  37. Leong, H.S., Podor, T.J., Manocha, B., & Lewis, J.D. (2011). Validation of flow cytometric detection of platelet microparticles and liposomes by atomic force microscopy. Journal of thrombosis and haemostasis, 9(12), 2466–76.

    Article  Google Scholar 

  38. Leroyer, A.S, Anfosso, F., Lacroix, R., Sabatier, F., Simoncini, S., Njock, S.M., Jourde, N., Brunet, P., Camoin-Jau, L., Sampol, J., & Dignat-George, F. (2010). Endothelial-derived microparticles: biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thrombosis and haemostasis, 104(3), 456–63.

    Article  Google Scholar 

  39. Martins, S.S.A., Martins, V.C., Cardoso, F.A. , Freitas, P.P., & Fonseca, L.P. (2012). Waterborne pathogen detection using a magnetoresistive immuno-chip. In Tiquia-Arashiro, S.M. (Ed.) Molecular Biological Technologies for Ocean Sensing SE - 13, Springer Protocols Handbooks (pp. 263–288). New York City: Humana Press.

  40. Mege, D., Panicot-Dubois, L., Ouaissi, M., Robert, S., Sielezneff, I., Sastre, B., Dignat-George, F., & Dubois, C. (2016). The origin and concentration of circulating microparticles differ according to cancer type and evolution: a prospective single-center study. International Journal of Cancer. Journal International du Cancer, 138(4), 939–48.

    Article  Google Scholar 

  41. Nicolet, A., Meli, F., van der Pol, E., Yuana, Y., Gollwitzer, C., Krumrey, M., Cizmar, P., Buhr, E., Pétry, J., Sebaihi, N., de Boeck, B., Fokkema, V., Bergmans, R., & Nieuwland, R. (2016). Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements. Measurement Science and Technology, 27(3), 035701.

    Article  Google Scholar 

  42. Nielsen, C.T., Østergaard, O., Johnsen, C., Jacobsen, S., & Heegaard, N.H.H. (2011). Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis and rheumatism, 63(10), 3067–77.

    Article  Google Scholar 

  43. Ordóñez, N.G. (2012). Immunohistochemical endothelial markers: a review. Advances in anatomic pathology, 19(5), 281–95.

    Article  Google Scholar 

  44. Østergaard, O., Nielsen, CT., Iversen, L.V., Jacobsen, S., Tanassi, J.T., & Heegaard, N.H.H. (2012). Quantitative proteome profiling of normal human circulating microparticles. Journal of Proteome Research, 11(4), 2154–2163.

    Article  Google Scholar 

  45. Reich, C.F., & Pisetsky, D.S. (2009). The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Experimental cell research, 315(5), 760–8.

    Article  Google Scholar 

  46. Rieger, A.M., Nelson, K.L., Konowalchuk, J.D., & Barreda, D.R. (2011). Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. Journal of visualized experiments, (50), e2597. https://doi.org/10.3791/2597.

  47. Rozlosnik, N., Gerstenberg, M.C., & Larsen, N.B. (2003). Effect of solvents and concentration on the formation of a self-assembled monolayer of octadecylsiloxane on silicon (001). Langmuir, 19(4), 1182–1188.

    Article  Google Scholar 

  48. Shet, A.S., Aras, O., Gupta, K., Hass, M.J., Rausch, D.J., Saba, N., Koopmeiners, L., Key, N.S., & Hebbel, R.P. (2003). Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood, 102(7), 2678–83.

    Article  Google Scholar 

  49. Simák, J., Holada, K., & Vostal, J.G. (2002). Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin . BMC cell biology, 3, 11.

    Article  Google Scholar 

  50. Strasser, E.F., Happ, S., Weiss, D.R., Pfeiffer, A., Zimmermann, R., & Eckstein, R. (2013). Microparticle detection in platelet products by three different methods. Transfusion, 53(1), 156–66.

    Article  Google Scholar 

  51. Sunkara, V., Woo, H.-K., & Cho, Y.-K. (2015). Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. The Analyst, 141(2), 371–381.

    Article  Google Scholar 

  52. Ullal, A.J., & Pisetsky, D.S. (2010). The release of microparticles by Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis. Apoptosis, 15(5), 586–96.

    Article  Google Scholar 

  53. van der Pol, E., Coumans, F.A.W., Grootemaat, A.E., Gardiner, C., Sargent, I.L., Harrison, P., Sturk, A., van Leeuwen, T.G., & Nieuwland, R. (2014). Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Journal of Thrombosis and Haemostasis, 12(7), 1182–1192.

    Article  Google Scholar 

  54. van der Pol, E., Hoekstra, A.G., Sturk, A., Otto, C., van Leeuwen, T.G., & Nieuwland, R. (2010). Optical and non-optical methods for detection and characterization of microparticles and exosomes. Journal of thrombosis and haemostasis, 8(12), 2596– 607.

    Article  Google Scholar 

  55. Shelke, G.V., Lässer, C., Gho, Y.S., & Lötvall, J. (2014). Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles, 3, 24783.

    Article  Google Scholar 

  56. Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13(3), 269–288.

    Article  Google Scholar 

  57. Yuana, Y., Oosterkamp, T.H., Bahatyrova, S., Ashcroft, B., Garcia Rodriguez, P., Bertina, R.M., & Osanto, S. (2010). Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. Journal of thrombosis and haemostasis, 8(2), 315–23.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mark Holm Olsen for the preparation of the gold substrates and proof-reading, as well as Julie Kirkegaard for proof-reading and Christian Engelbrekt for providing training and access to the NTA. This work has been supported by the Technical University of Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solène Cherre.

Appendix: Characterization of the Complete Growth Medium for HUVEC Culture

Appendix: Characterization of the Complete Growth Medium for HUVEC Culture

The different components of the complete growth medium of HUVECs were processed like the cell culture supernatants (centrifugation protocol described in Section 2.5) to assess if MVs or MV like particles were present in the complete growth medium before culture with the cells. Figure 7a shows the concentration of MVs detected in the processed aliquots of the medium components as measured with NTA. In the complete growth medium, 1.8 × 109 MVs/ml (SD + / − 5 × 108, corresponding to 28%) were detected. The levels of MVs measured in Ham’s F12K and the penicillin/streptomycin solution were below 10% of the level of MVs in the complete growth medium. However, the level of MVs in the FBS reached 1.1 × 1010 MVs/ml (SD + / − 3.6 × 108, corresponding to 3%), that was approximately ten times more than that in the complete medium. The size distributions of the MV from the complete growth medium and from the FBS (Fig. 7b) both show a main peak at 160 nm. The buffer used (phosphate-buffered saline, PBS) was filtered through a 0.1- μ m syringe filter prior of use and also had a low level of MVs (1.1 × 108 MVs/ml).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherre, S., Granberg, M., Østergaard, O. et al. Generation and Characterization of Cell-Derived Microvesicles from HUVECs. BioNanoSci. 8, 140–153 (2018). https://doi.org/10.1007/s12668-017-0438-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0438-7

Keywords

Navigation