Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 140–153 | Cite as

Generation and Characterization of Cell-Derived Microvesicles from HUVECs

  • Solène Cherre
  • Mathilde Granberg
  • Ole Østergaard
  • Niels H. H. Heegaard
  • Noemi Rozlosnik
Article

Abstract

Microvesicles (MVs) are of great interest for the biomedical field as novel diagnostics biomarkers. MV research, however, is still impaired by the lack of standardization of the analysis methods. In this study, our goals were to develop a method for the reproducible generation of an MV population from cell culture, to compare the sizing of MVs by atomic force microscopy (AFM) and nanoparticle tracking analysis (NTA) and to develop an MV array allowing the sizing and phenotyping of MVs simultaneously with the AFM as a read-out. MVs were isolated from apoptotic human umbilical vein endothelial cells (HUVECs) and had a mean size of 115 nm as measured by AFM and of 197 nm as measured by NTA. MVs isolated from apoptotic and control HUVECs could not be distinguished by their size (p > 0.05). HUVECs and their released MVs shared the same phenotype (positive for endothelial markers CD31 and CD146 and negative for platelet marker CD42b). Our method generated MVs with a concentration which was reproducible within a range of 20%. This is a relevant model system for medical applications. The size of the MVs was larger as measured using NTA compared to that using AFM. The MV array was efficient to characterize the surface markers of MVs and has the potential to identify the cellular origins of MVs in patient samples.

Keywords

Cell-derived microvesicles Extracellular vesicles Atomic force microscopy Nanoparticle tracking analysis 

Notes

Acknowledgements

The author would like to thank Mark Holm Olsen for the preparation of the gold substrates and proof-reading, as well as Julie Kirkegaard for proof-reading and Christian Engelbrekt for providing training and access to the NTA. This work has been supported by the Technical University of Denmark.

References

  1. 1.
    Aatonen, M.T., Öhman, T., Nyman, T.A., Laitinen, S., Grönholm, M., & Siljander, P.R.-M. (2014). Isolation and characterization of platelet-derived extracellular vesicles. Journal of Extracellular Vesicles, 3, 24692.CrossRefGoogle Scholar
  2. 2.
    Angelot, F., Seillès, E., Biichlé, S., Berda, Y., Gaugler, B., Plumas, J., Chaperot, L., Dignat-George, F., Tiberghien, P., Saas, P., & Garnache-Ottou, F. (2009). Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases. Haematologica, 94 (11), 1502–12.CrossRefGoogle Scholar
  3. 3.
    Ashcroft, B.A., de Sonneville, J., Yuana, Y., Osanto, S., Bertina, R., Kuil, M.E., & Oosterkamp, T.H. (2012). Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomedical microdevices, 14(4), 641–9.CrossRefGoogle Scholar
  4. 4.
    Ayers, L., Kohler, M., Harrison, P., Sargent, I., Dragovic, R., Schaap, M., Nieuwland, R., Brooks, S.A., & Ferry, B. (2011). Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thrombosis Research, 127(4), 370–377.CrossRefGoogle Scholar
  5. 5.
    Bagley, R.G., Walter-Yohrling, J., Cao, X., Weber, W., Simons, B., Cook, B.P., Chartrand, S.D., Wang, C., Madden, S.L., & Teicher, B.A. (2003). Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells. Cancer research, 63(18), 5866–5873.Google Scholar
  6. 6.
    Bardin, N. (2001). Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood, 98(13), 3677–3684.CrossRefGoogle Scholar
  7. 7.
    Bertrand, R., Solary, E., O’Connor, P., Kohn, K.W., & Pommier, Y. (1994). Induction of a common pathway of apoptosis by staurosporine. Experimental cell research, 211(2), 314–321.CrossRefGoogle Scholar
  8. 8.
    Boulanger, C.M., Amabile, N., & Tedgui, A. (2006). Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension, 48(2), 180–186.CrossRefGoogle Scholar
  9. 9.
    Burger, D., Schock, S., Thompson, C.S., Montezano, A.C., Hakim, A.M., & Touyz, R.M. (2013). Microparticles: biomarkers and beyond. Clinical science (London England : 1979), 124(7), 423–41.CrossRefGoogle Scholar
  10. 10.
    Buzas, E.I., György, B., Nagy, G., Falus, A., & Gay, S. (2014). Emerging role of extracellular vesicles in inflammatory diseases. Nature Reviews. Rheumatology, 10(6), 356–64.CrossRefGoogle Scholar
  11. 11.
    Chandler, W.L., Yeung, W., & Tait, J.F. (2011). A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. Journal of thrombosis and haemostasis, 9(6), 1216–24.CrossRefGoogle Scholar
  12. 12.
    Chironi, G.N., Boulanger, C.M., Simon, A., Dignat-George, F., Freyssinet, J.-M., & Tedgui, A. (2009). Endothelial microparticles in diseases. Cell and tissue research, 335(1), 143–51.CrossRefGoogle Scholar
  13. 13.
    Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends in cell biology, 19(2), 43–51.CrossRefGoogle Scholar
  14. 14.
    Combes, V., Simon, A.C., Grau, G.E., Arnoux, D., Camoin, L., Sabatier, F., Mutin, M., Sanmarco, M., Sampol, J., & Dignat-George, F. (1999). In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. The Journal of clinical investigation, 104(1), 93–102.CrossRefGoogle Scholar
  15. 15.
    Coumans, F.A.W., van der Pol, E., Böing, A.N., Hajji, N., Sturk, G., van Leeuwen, T.G., & Nieuwland, R. (2014). Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. Journal of Extracellular Vesicles, 3, 25922.CrossRefGoogle Scholar
  16. 16.
    Dignat-George, F., & Boulanger, C.M. (2011). The many faces of endothelial microparticles. Arteriosclerosis, thrombosis, and vascular biology, 31(1), 27–33.CrossRefGoogle Scholar
  17. 17.
    Dragovic, R.A., Gardiner, C., Brooks, A.S., Tannetta, D.S., Ferguson, D.J.P., Hole, P., Carr, B., Redman, C.W.G., Harris, A.L., Dobson, P.J., Harrison, P., & Sargent, I.L. (2011). Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine : nanotechnology, biology, and medicine, 7(6), 780–788.CrossRefGoogle Scholar
  18. 18.
    Eitan, E., Zhang, S., Witwer, K.W., & Mattson, M.P. (2015). Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth. Journal of Extracellular Vesicles, 4, 26373.CrossRefGoogle Scholar
  19. 19.
    Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495–516.CrossRefGoogle Scholar
  20. 20.
    Fernandes, E., Martins, V.C., Nóbrega, C., Carvalho, C.M., Cardoso, F.A., Cardoso, S., Dias, J., Deng, D., Kluskens, L.D., Freitas, P.P., & Azeredo, J. (2014). A bacteriophage detection tool for viability assessment of Salmonella cells. Biosensors & bioelectronics, 52, 239–46.CrossRefGoogle Scholar
  21. 21.
    Gardiner, C., Ferreira, Y.J, Dragovic, R.A, Redman, C.W.G., & Sargent, I.L. (2013). Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. Journal of extracellular vesicles, 2, 19671.CrossRefGoogle Scholar
  22. 22.
    Gardiner, C., Harrison, P., Belting, M., Böing, A., Campello, E., Carter, B.S., Collier, M.E., Coumans, F., Ettelaie, C., van Es, N., Hochberg, F.H., Mackman, N., Rennert, R.C., Thaler, J., Rak, J., & Nieuwland, R. (2015). Extracellular vesicles, tissue factor, cancer and thrombosis—discussion themes of the ISEV 2014 Educational Day. Journal of extracellular vesicles, 4, 26901.CrossRefGoogle Scholar
  23. 23.
    Gelderman, M.P., & Simak, J. (2008). Flow cytometric analysis of cell membrane microparticles. Methods in molecular biology, 484, 79–93.CrossRefGoogle Scholar
  24. 24.
    Gercel-Taylor, C., Atay, S., Tullis, R.H., Kesimer, M., & Taylor, D.D. (2012). Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Analytical biochemistry, 428(1), 44–53.CrossRefGoogle Scholar
  25. 25.
    Gheldof, D., Hardij, J., Cecchet, F., Chatelain, B., Dogné, J.-M., & Mullier, F. (2013). Thrombin generation assay and transmission electron microscopy: a useful combination to study tissue factor-bearing microvesicles. Journal of Extracellular Vesicles, 2, 19728.CrossRefGoogle Scholar
  26. 26.
    Gong, J., Jaiswal, R., Dalla, P., Luk, F., & Bebawy, M. (2015). Microparticles in cancer a review of recent developments and the potential for clinical application. Seminars in Cell & Developmental Biology, 40, 35–40.CrossRefGoogle Scholar
  27. 27.
    Hardij, J., Cecchet, F., Berquand, A., Gheldof, D., Chatelain, C., Mullier, F., Chatelain, B., & Dogné J.-M. (2013). Characterisation of tissue factor-bearing extracellular vesicles with AFM: comparison of air-tapping-mode AFM and liquid Peak Force AFM. Journal of Extracellular Vesicles, 2, 21045.CrossRefGoogle Scholar
  28. 28.
    Hessler, J.A., Budor, A., Putchakayala, K., Mecke, A., Rieger, D., Banaszak Holl, M.M., Orr, B.G., Bielinska, A., Beals, J., & Baker, J. (2005). Atomic force microscopy study of early morphological changes during apoptosis. Langmuir, 21(20), 9280–9286.CrossRefGoogle Scholar
  29. 29.
    Issman, L., Brenner, B., Talmon, Y., & Aharon, A. (2013). Cryogenic transmission electron microscopy nanostructural study of shed microparticles. PloS one, 8(12), e83680.CrossRefGoogle Scholar
  30. 30.
    Jørgensen, M., Bæk, R., Pedersen, S., Søndergaard, E.K.L., Kristensen, S.R., & Varming, K. (2013). Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. Journal of extracellular vesicles, 2, 20920.CrossRefGoogle Scholar
  31. 31.
    Jørgensen, M.M., Bæk, R., & Varming, K. (2015). Potentials and capabilities of the extracellular vesicle (EV) array. Journal of extracellular vesicles, 4, 26048.CrossRefGoogle Scholar
  32. 32.
    Kabir, J., Lobo, M., & Zachary, I. (2002). Staurosporine induces endothelial cell apoptosis via focal adhesion kinase dephosphorylation and focal adhesion disassembly independent of focal adhesion kinase proteolysis. Biochemical Journal, 367(1), 145–155.CrossRefGoogle Scholar
  33. 33.
    Kim, K.S., Cho, C.H., Park, E.K., Jung, M.-H., Yoon, K.-S., & Park, H.-K. (2012). AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells. PloS one, 7(1), e30066.CrossRefGoogle Scholar
  34. 34.
    Laffont, B., Corduan, A., Plé, H., Duchez, A.-C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2 microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–61.CrossRefGoogle Scholar
  35. 35.
    Latham, S.L., Tiberti, N., Gokoolparsadh, N., Holdaway, K., Couraud, P.O. , Grau, G.E.R., & Combes, V. (2015). Immuno-analysis of microparticles: probing at the limits of detection. Scientific reports, 5, 16314.CrossRefGoogle Scholar
  36. 36.
    Lawrie, A.S., Albanyan, A., Cardigan, R.A., Mackie, I.J., & Harrison, P. (2009). Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox sanguinis, 96(3), 206–212.CrossRefGoogle Scholar
  37. 37.
    Leong, H.S., Podor, T.J., Manocha, B., & Lewis, J.D. (2011). Validation of flow cytometric detection of platelet microparticles and liposomes by atomic force microscopy. Journal of thrombosis and haemostasis, 9(12), 2466–76.CrossRefGoogle Scholar
  38. 38.
    Leroyer, A.S, Anfosso, F., Lacroix, R., Sabatier, F., Simoncini, S., Njock, S.M., Jourde, N., Brunet, P., Camoin-Jau, L., Sampol, J., & Dignat-George, F. (2010). Endothelial-derived microparticles: biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thrombosis and haemostasis, 104(3), 456–63.CrossRefGoogle Scholar
  39. 39.
    Martins, S.S.A., Martins, V.C., Cardoso, F.A. , Freitas, P.P., & Fonseca, L.P. (2012). Waterborne pathogen detection using a magnetoresistive immuno-chip. In Tiquia-Arashiro, S.M. (Ed.) Molecular Biological Technologies for Ocean Sensing SE - 13, Springer Protocols Handbooks (pp. 263–288). New York City: Humana Press.Google Scholar
  40. 40.
    Mege, D., Panicot-Dubois, L., Ouaissi, M., Robert, S., Sielezneff, I., Sastre, B., Dignat-George, F., & Dubois, C. (2016). The origin and concentration of circulating microparticles differ according to cancer type and evolution: a prospective single-center study. International Journal of Cancer. Journal International du Cancer, 138(4), 939–48.CrossRefGoogle Scholar
  41. 41.
    Nicolet, A., Meli, F., van der Pol, E., Yuana, Y., Gollwitzer, C., Krumrey, M., Cizmar, P., Buhr, E., Pétry, J., Sebaihi, N., de Boeck, B., Fokkema, V., Bergmans, R., & Nieuwland, R. (2016). Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements. Measurement Science and Technology, 27(3), 035701.CrossRefGoogle Scholar
  42. 42.
    Nielsen, C.T., Østergaard, O., Johnsen, C., Jacobsen, S., & Heegaard, N.H.H. (2011). Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis and rheumatism, 63(10), 3067–77.CrossRefGoogle Scholar
  43. 43.
    Ordóñez, N.G. (2012). Immunohistochemical endothelial markers: a review. Advances in anatomic pathology, 19(5), 281–95.CrossRefGoogle Scholar
  44. 44.
    Østergaard, O., Nielsen, CT., Iversen, L.V., Jacobsen, S., Tanassi, J.T., & Heegaard, N.H.H. (2012). Quantitative proteome profiling of normal human circulating microparticles. Journal of Proteome Research, 11(4), 2154–2163.CrossRefGoogle Scholar
  45. 45.
    Reich, C.F., & Pisetsky, D.S. (2009). The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Experimental cell research, 315(5), 760–8.CrossRefGoogle Scholar
  46. 46.
    Rieger, A.M., Nelson, K.L., Konowalchuk, J.D., & Barreda, D.R. (2011). Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. Journal of visualized experiments, (50), e2597.  https://doi.org/10.3791/2597.
  47. 47.
    Rozlosnik, N., Gerstenberg, M.C., & Larsen, N.B. (2003). Effect of solvents and concentration on the formation of a self-assembled monolayer of octadecylsiloxane on silicon (001). Langmuir, 19(4), 1182–1188.CrossRefGoogle Scholar
  48. 48.
    Shet, A.S., Aras, O., Gupta, K., Hass, M.J., Rausch, D.J., Saba, N., Koopmeiners, L., Key, N.S., & Hebbel, R.P. (2003). Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood, 102(7), 2678–83.CrossRefGoogle Scholar
  49. 49.
    Simák, J., Holada, K., & Vostal, J.G. (2002). Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin . BMC cell biology, 3, 11.CrossRefGoogle Scholar
  50. 50.
    Strasser, E.F., Happ, S., Weiss, D.R., Pfeiffer, A., Zimmermann, R., & Eckstein, R. (2013). Microparticle detection in platelet products by three different methods. Transfusion, 53(1), 156–66.CrossRefGoogle Scholar
  51. 51.
    Sunkara, V., Woo, H.-K., & Cho, Y.-K. (2015). Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. The Analyst, 141(2), 371–381.CrossRefGoogle Scholar
  52. 52.
    Ullal, A.J., & Pisetsky, D.S. (2010). The release of microparticles by Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis. Apoptosis, 15(5), 586–96.CrossRefGoogle Scholar
  53. 53.
    van der Pol, E., Coumans, F.A.W., Grootemaat, A.E., Gardiner, C., Sargent, I.L., Harrison, P., Sturk, A., van Leeuwen, T.G., & Nieuwland, R. (2014). Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Journal of Thrombosis and Haemostasis, 12(7), 1182–1192.CrossRefGoogle Scholar
  54. 54.
    van der Pol, E., Hoekstra, A.G., Sturk, A., Otto, C., van Leeuwen, T.G., & Nieuwland, R. (2010). Optical and non-optical methods for detection and characterization of microparticles and exosomes. Journal of thrombosis and haemostasis, 8(12), 2596– 607.CrossRefGoogle Scholar
  55. 55.
    Shelke, G.V., Lässer, C., Gho, Y.S., & Lötvall, J. (2014). Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles, 3, 24783.CrossRefGoogle Scholar
  56. 56.
    Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13(3), 269–288.CrossRefGoogle Scholar
  57. 57.
    Yuana, Y., Oosterkamp, T.H., Bahatyrova, S., Ashcroft, B., Garcia Rodriguez, P., Bertina, R.M., & Osanto, S. (2010). Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. Journal of thrombosis and haemostasis, 8(2), 315–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Micro- and NanotechnologyTechnical University of DenmarkLyngbyDenmark
  2. 2.Statens Serum InstitutCopenhagenDenmark
  3. 3.Department of Clinical Biochemistry and PharmacologyOdense University Hospital, University of Southern DenmarkOdense CDenmark

Personalised recommendations