Advertisement

BioNanoScience

, Volume 8, Issue 1, pp 131–139 | Cite as

The Influence of Pulsed Electron Beam Treatment on Properties of PLLA Nonwoven Materials Produced by Solution Blow Spinning

  • V. L. Kudryavtseva
  • E. N. Bolbasov
  • D. V. Ponomarev
  • G. E. Remnev
  • S. I. Tverdokhlebov
Article
  • 176 Downloads

Abstract

One of the most important aspects in nonwoven materials fabrication in case biodegradable scaffolds is the control of their degradation rate which must correlate with a speed of tissue regeneration. Radiation treatment based on electron beam irradiation is one of the promising methods for control over polymer degradation. The effect of nanosecond pulsed electron beam irradiation on properties of poly-L-lactic acid (PLLA) nonwoven materials produced by solution blow spinning (SBS) method was investigated. Modification of nonwoven materials was performed in electron beam accelerator with absorbed dose from 26 to 260 kGy. Properties of the nonwoven materials were examined by means of viscosity measurement, X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR) spectroscopy, and scanning electron microscopy (SEM). It was shown that pulsed electron beam exposure leads to the reduction of polymer molecular weight and recrystallization. It was shown that pulsed electron beam modification of PLLA nonwoven materials changes their physical and chemical properties that allows considering this method as a potential technology for the manipulation of polymer degradation rate and fabrication of polymer materials with required properties.

Keywords

Biodegradable polymers Polylactide Pulsed electron beam Degradation Chain scission Scaffolds Solution blow spinning 

Notes

Acknowledgements

This research was funded by the Russian Science Foundation (project no. 16-13-10239) and performed in Tomsk Polytechnic University. The experimental calculations are carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant TPU CEP-RIO-52/2017.

References

  1. 1.
    Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8–9), 762–798. doi: 10.1016/j.progpolymsci.2007.05.017.CrossRefGoogle Scholar
  2. 2.
    Kedik, S. A., Zhavoronok, E. S., Sedishev, I. P., Panov, A. V., Suslov, V. V., Petrova, E. A., … Eremin, D. V. (2013). Polymers for the prolonged drug delivery systems (review). Polymers and copolymers based on lactic and glycolic acids. Drug Development & Registration, 5(3), 18–36.Google Scholar
  3. 3.
    Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338–356. doi: 10.1016/j.progpolymsci.2009.12.003.CrossRefGoogle Scholar
  4. 4.
    Gupta, B., Revagade, N., & Hilborn, J. (2007). Poly(lactic acid) fiber: an overview. Progress in Polymer Science, 32(4), 455–482. doi: 10.1016/j.progpolymsci.2007.01.005.CrossRefGoogle Scholar
  5. 5.
    Khlusov, I. A., Zaitsev, K. V., Zhukova, O. B., Gostyukhina, A. A., Abdulkina, N. G., Zaitsev, A. A., et al. (2013). The dynamics of in vitro degradation of non-woven polylactide matrices in model biological liquid. Bulletin of Siberian Medicine, 12(6), 73–81.Google Scholar
  6. 6.
    Poncin-Epaillard, F., Shavdina, O., & Debarnot, D. (2013). Elaboration and surface modification of structured poly(L-lactic acid) thin film on various substrates. Materials Science & Engineering. C, Materials for Biological Applications, 33(5), 2526–2533. doi: 10.1016/j.msec.2013.02.010.CrossRefGoogle Scholar
  7. 7.
    Tverdokhlebov, S. I., Stankevich, K., Bolbasov, E., Khlusov, I., Kulagina, I., & Zaitsev, K. (2013). Nonwoven polylactide scaffolds obtained by solution blow spinning and the in vitro degradation dynamics. Advanced Materials Research, 872, 257–262. doi: 10.4028/www.scientific.net/AMR.872.257.CrossRefGoogle Scholar
  8. 8.
    Bolbasov, E. N., Stankevich, K. S., Sudarev, E. A., Bouznik, V. M., Kudryavtseva, V. L., Antonova, L. V., et al. (2016). The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride—etrafluoroethylene copolymer. Materials Chemistry and Physics. doi: 10.1016/j.matchemphys.2016.07.041.
  9. 9.
    Chawla, A. S., & Chang, T. M. S. (1985). In-vivo degradation of poly(lactic acid) of different molecular weights. Biomaterials, Medical Devices, and Artificial Organs, 13(3–4), 153–162. doi: 10.3109/10731198509118848.CrossRefGoogle Scholar
  10. 10.
    Cairns, M.-L., Sykes, A., Dickson, G. R., Orr, J. F., Farrar, D., Dumba, A., & Buchanan, F. J. (2011). Through-thickness control of polymer bioresorption via electron beam irradiation. Acta Biomaterialia, 7(2), 548–557. doi: 10.1016/j.actbio.2010.09.012.CrossRefGoogle Scholar
  11. 11.
    Kim, K., Yu, M., Zong, X., Chiu, J., Fang, D., Seo, Y.-S., et al. (2003). Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 24(27), 4977–4985. doi: 10.1016/S0142-9612(03)00407-1.CrossRefGoogle Scholar
  12. 12.
    Lee, K. Y., Bouhadir, K. H., & Mooney, D. J. (2004). Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials, 25(13), 2461–2466. doi: 10.1016/j.biomaterials.2003.09.030.CrossRefGoogle Scholar
  13. 13.
    Kost, J., Leong, K., & Langer, R. (1989). Ultrasound-enhanced polymer degradation and release of incorporated substances. Proceedings of the National Academy of Sciences of the United States of America, 86(20), 7663–7666 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2813349.CrossRefGoogle Scholar
  14. 14.
    Kudryavtseva, V., Stankevich, K., Gudima, A., Kibler, E., Zhukov, Y., Bolbasov, E., et al. (2017). Atmospheric pressure plasma assisted immobilization of hyaluronic acid on tissue engineering PLA-based scaffolds and its effect on primary human macrophages. Materials & Design, 127, 261–271. doi: 10.1016/j.matdes.2017.04.079.CrossRefGoogle Scholar
  15. 15.
    Milicevic, D., Trifunovic, S., Galovic, S., & Suljovrujic, E. (2007). Thermal and crystallization behaviour of gamma irradiated PLLA. Radiation Physics and Chemistry, 76(8–9), 1376–1380. doi: 10.1016/j.radphyschem.2007.02.035.CrossRefGoogle Scholar
  16. 16.
    Montanari, L., Costantini, M., Signoretti, E. C., Valvo, L., Santucci, M., Bartolomei, M., et al. (1998). Gamma irradiation effects on poly(dl-lactictide-co-glycolide) microspheres. Journal of Controlled Release, 56(1–3), 219–229. doi: 10.1016/S0168-3659(98)00082-0.CrossRefGoogle Scholar
  17. 17.
    Loo, S. C. J., Ooi, C. P., & Boey, Y. C. F. (2004). Radiation effects on poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA). Polymer Degradation and Stability, 83(2), 259–265. doi: 10.1016/S0141-3910(03)00271-4.CrossRefGoogle Scholar
  18. 18.
    Lee, E. H., Lewis, M. B., Blau, P. J., & Mansur, L. K. (1991). Improved surface properties of polymer materials by multiple ion beam treatment. Journal of Materials Research, 6(3), 610–628. doi: 10.1557/JMR.1991.0610.CrossRefGoogle Scholar
  19. 19.
    Wach, R. A., Rokita, B., Bartoszek, N., Katsumura, Y., Ulanski, P., & Rosiak, J. M. (2014). Hydroxyl radical-induced crosslinking and radiation-initiated hydrogel formation in dilute aqueous solutions of carboxymethylcellulose. Carbohydrate Polymers, 112, 412–415. doi: 10.1016/j.carbpol.2014.06.007.CrossRefGoogle Scholar
  20. 20.
    Loo, S. C. J., Tan, H. T., Ooi, C. P., & Boey, Y. C. F. (2006). Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA. Acta Biomaterialia, 2(3), 287–296. doi: 10.1016/j.actbio.2005.10.003.CrossRefGoogle Scholar
  21. 21.
    Nuutinen, J.-P., Clerc, C., Virta, T., & Törmälä, P. (2002). Effect of gamma, ethylene oxide, electron beam, and plasma sterilization on the behaviour of SR-PLLA fibres in vitro. Journal of Biomaterials Science, Polymer Edition, 13(12), 1325–1336. doi: 10.1163/15685620260449723.CrossRefGoogle Scholar
  22. 22.
    Filipczak, K., Wozniak, M., Ulanski, P., Olah, L., Przybytniak, G., Olkowski, R. M., et al. (2006). Poly(ɛ-caprolactone) biomaterial sterilized by E-beam irradiation. Macromolecular Bioscience, 6(4), 261–273. doi: 10.1002/mabi.200500215.CrossRefGoogle Scholar
  23. 23.
    Cairns, M.-L., Dickson, G. R., Orr, J. F., Farrar, D., Hawkins, K., & Buchanan, F. J. (2011). Electron-beam treatment of poly(lactic acid) to control degradation profiles. Polymer Degradation and Stability, 96(1), 76–83. doi: 10.1016/j.polymdegradstab.2010.10.016.CrossRefGoogle Scholar
  24. 24.
    Joachim Loo, S. C., Jason Tan, W. L., Khoa, S. M., Chia, N. K., Venkatraman, S., & Boey, F. (2008). Hydrolytic degradation characteristics of irradiated multi-layered PLGA films. International Journal of Pharmaceutics, 360(1–2), 228–230. doi: 10.1016/j.ijpharm.2008.04.017.CrossRefGoogle Scholar
  25. 25.
    Loo, J. S. C., Ooi, C. P., & Boey, F. Y. C. (2005). Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. Biomaterials, 26, 1359–1367. doi: 10.1016/j.biomaterials.2004.05.001.CrossRefGoogle Scholar
  26. 26.
    Phong, L., Han, E. S. C., Xiong, S., Pan, J., & Loo, S. C. J. (2010). Properties and hydrolysis of PLGA and PLLA cross-linked with electron beam radiation. Polymer Degradation and Stability, 95(5), 771–777. doi: 10.1016/j.polymdegradstab.2010.02.012.CrossRefGoogle Scholar
  27. 27.
    Kodama, Y., Machado, L. D. B., Giovedi, C., De Lima, N. B., & Nakayama, K. (2009). Investigation of irradiated biodegradable blends by FTIR and wide-angle X-ray diffraction. Nukleonika, 54(2), 107–113.Google Scholar
  28. 28.
    Kodama, Y., & Giovedi, C. (2012). Ionizing radiation effect on morphology of PLLA: PCL blends and on their composite with coconut fiber. In V. Kazmiruk (Ed.), Scanning electron microscopy (pp. 243–266). Retrieved from http://www.intechopen.com/books/scanning-electronmicroscopy/ionizing-radiation-effect-on-the-morphology-of-plla-pcl-blends-and-on-their-composite-withcoconut-f.
  29. 29.
    Kodama, Y., de Lima, N. B., Giovedi, C., Machado, L. D. B., Aparecido, W., Calvo, P., et al. (2012). WAXD and FTIR studies of electron beam irradiated biodegradable polymers. Journal of Physical Science and Application, 4(2), 80–87.Google Scholar
  30. 30.
    Zhang, X., Kotaki, M., Okubayashi, S., & Sukigara, S. (2010). Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers. Acta Biomaterialia, 6, 123–129. doi: 10.1016/j.actbio.2009.06.007.CrossRefGoogle Scholar
  31. 31.
    Leonard, D. J., Pick, L. T., Farrar, D. F., Dickson, G. R., Orr, J. F., & Buchanan, F. J. (2009). The modification of PLA and PLGA using electron-beam radiation. Journal of Biomedical Materials Research Part A, 89A(3), 567–574. doi: 10.1002/jbm.a.31998.CrossRefGoogle Scholar
  32. 32.
    Leonard, D., Buchanan, F., & Farrar, D. (2006). Investigation into depth dependence of effect of E-beam radiation on mechanical and degradation properties of polylactide. Plastics, Rubber and Composites, 35(8), 303–309. doi: 10.1179/174328906X143840.CrossRefGoogle Scholar
  33. 33.
    Demidov, B. A., Efremov, V. P., Ivkin, M. V., Meshcheryakov, A. N., & Petrov, V. A. (2003). Effect of intense energy fluxes on vacuum-tight rubber. Technical Physics. doi: 10.1134/1.1583836.
  34. 34.
    Mano, J. F., Gómez Ribelles, J. L., Alves, N. M., & Salmerón Sanchez, M. (2005). Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer, 46(19), 8258–8265. doi: 10.1016/j.polymer.2005.06.096.CrossRefGoogle Scholar
  35. 35.
    Remnev, G. E., Furman, E. G., Pushkarev, A. I., Karpuzov, S. B., Kondrat’ev, N. A., & Goncharov, D. V. (2004). A high-current pulsed accelerator with a matching transformer. Instruments and Experimental Techniques, 47(3), 394–398. doi: 10.1023/B:INET.0000032909.92515.b7.CrossRefGoogle Scholar
  36. 36.
    Ponomarev, D., Kholodnaya, G., Remnev, G., Kaikanov, M., & Sazonov, R. (2014). Study on nanosecond pulsed electron beam generation. Journal of Physics: Conference Series, 552, 12024. doi: 10.1088/1742-6596/552/1/012024.Google Scholar
  37. 37.
    Kholodnaya, G. E., Sazonov, R. V., Ponomarev, D. V., Remnev, G. E., & Vikanov, A. A. (2015). Influence of current—conducting inserts in a drift tube on transportation of a pulsed electron beam at gigawatt power. Laser and Particle Beams, 33(4), 749–754. doi: 10.1017/S0263034615000762.CrossRefGoogle Scholar
  38. 38.
    Schindler, A., & Harper, D. (1979). Polylactide. II. Viscosity–molecular weight relationships and unperturbed chain dimensions. Journal of Polymer Science: Polymer Chemistry Edition, 17(8), 2593–2599. doi: 10.1002/pol.1979.170170831.Google Scholar
  39. 39.
    Lai, W.-C., & Liao, J.-P. (2013). Nucleation and crystal growth kinetics of poly(l-lactic acid) with self-assembled DBS nanofibrils. Materials Chemistry and Physics, 139(1), 161–168. doi: 10.1016/j.matchemphys.2013.01.014.CrossRefGoogle Scholar
  40. 40.
    Pan, P., Kai, W., Zhu, B., Dong, T., & Inoue, Y. (2007). Polymorphous crystallization and multiple melting behavior of poly(L-lactide): molecular weight dependence. Macromolecules, 40, 6898–6905. doi: 10.1021/ma071258d.CrossRefGoogle Scholar
  41. 41.
    Rabek, J. (1980). Experimental methods in polymer chemistry: physical principles and applications. New York: John Wiley & Sons Ltd.Google Scholar
  42. 42.
    Kawai, T., Rahman, N., Matsuba, G., Nishida, K., Kanaya, T., Nakano, M., et al. (2007). Crystallization and melting behavior of poly ( <scp>l</scp> −lactic acid). Macromolecules, 40(26), 9463–9469. doi: 10.1021/ma070082c.CrossRefGoogle Scholar
  43. 43.
    Hoogsteen, W., Postema, A. R., Pennings, A. J., Ten Brinke, G., & Zugenmaier, P. (1990). Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers. Macromolecules, 23(2), 634–642. doi: 10.1021/ma00204a041.CrossRefGoogle Scholar
  44. 44.
    Ribeiro, C., Sencadas, V., Costa, C. M., Gómez Ribelles, J. L., & Lanceros-Méndez, S. (2011). Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 12, 15001. doi: 10.1088/1468-6996/12/1/015001.CrossRefGoogle Scholar
  45. 45.
    Auras, R. A., Lim, L.-T., Selke, S. E. M., & Tsuji, H. (2011). Poly (lactic acid): synthesis, structures, properties, processing, and applications (John Wiley.). Retrieved from https://books.google.ru/books?id=UBUdo_mbr6AC&pg=PA97&lpg=PA97&dq=optical+properties+PLA&source=bl&ots=fOypNo7dSJ&sig=E4uBgWvTUrkS-xKZ0ZNGQDX3610&hl=ru&sa=X&ei=SooZVZbVIM7KObPCgPAJ&redir_esc=y#v=onepage&q=optical properties PLA&f=false.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • V. L. Kudryavtseva
    • 1
  • E. N. Bolbasov
    • 1
  • D. V. Ponomarev
    • 1
  • G. E. Remnev
    • 1
  • S. I. Tverdokhlebov
    • 1
  1. 1.Tomsk Polytechnic UniversityTomskRussian Federation

Personalised recommendations