, Volume 8, Issue 1, pp 118–130 | Cite as

Designing and Optimizing DNA Reversible Adders and Adder/Subtractors

  • Afsaneh Khoshkhahesh
  • Sepideh Ebrahimi
  • Reza Sabbaghi-Nadooshan


The construction of new biological systems is a new field of biological science in which many fields of science, such as chemistry and engineering, are simultaneously applied. Reversible logic has shown its capabilities for DNA computing, quantum computing, low-power computing, and nano-technology. Due to its inherently reversible features, DNA technology can be used as a suitable alternative to traditional silicon technology to decrease power consumption. One area discussed in the context of DNA-based calculations is the design of DNA-based gates and circuits using related biochemical operations. The present study designs DNA-based reversible adder and subtractor circuits. Toffoli, Feynman, and Fredkin gates are used to demonstrate reversible DNA-based half adder, full adder, half adder/subtractor, full adder/subtractor, and switchable half adder/subtractor designs. An optimization method is used to optimize the proposed DNA-based circuits to have power and delay as low as possible. The novel circuits are then optimized in quantum merit criteria of quantum cost, constant inputs, garbage outputs, delay, and number of gates, using a combination of Toffoli and Feynman gates. The comparative results show that our proposed reversible DNA-based switchable half adder/subtractor is more optimized than existing circuit in terms of quantum merit criteria. For the comparison, the proposed full adder is implemented using CMOS and CNTFET technology as well.


DNA Adder/subtractor Reversible gate Optimization Quantum merit criteria 


  1. 1.
    Sarker, A., Babu, H. M. H., & Rashid, S. M. M. (2015). Design of a DNA-based reversible arithmetic and logic unit. IET Nanobiotechnology, 9, 226–238.CrossRefGoogle Scholar
  2. 2.
    Mardian, R., & Sekiyama, K. (2015). Ant systems-based DNA circuits. BioNanoScience, 4, 206–216.CrossRefGoogle Scholar
  3. 3.
    Kari, L., Daley, M., Gloor, G., Siromoney, R., Landweber, L. F., Rangan, C. P., Raman, V., Ramanujam, R. (1999). How to compute with DNA. FSTTCS’99, LNCS 1738. pp. 269–282.Google Scholar
  4. 4.
    Schaumann, H. C., Rief, M., Tolksdorf, C., & Gaub, H. E. (2000). Mechanical stability of single DNA molecule. Biophysical Journal, 78, 1997–2007.CrossRefGoogle Scholar
  5. 5.
    Fulekar, M. H. (2009). Bioinformatic in life and environmental sciences (pp. 200–206). New York: Springer.Google Scholar
  6. 6.
    Ryu, W. (2002). DNA computing: a primer. London: Ars Technica.Google Scholar
  7. 7.
    Yingwei, Y. (2002). DNA computing: DNA computers vs. conventional electronic computers, University of Stuttgart.Google Scholar
  8. 8.
    Echols, H., & Goodman, M. F. (1999). Fidelity mechanisms in DNA replication. Annual Review of Biochemistry, 60, 477–511.CrossRefGoogle Scholar
  9. 9.
    Karl, L. (1997). DNA computing: the arrival of biological mathematics. The Mathematical Intelligence, 19, 9–22.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hiasa, H., & Marians, K. J. (1994). Primase couples leading and lagging-strand DNA synthesis from oriC. The Journal of Biological Chemistry, 269, 6058–6063.Google Scholar
  11. 11.
    Sarker, A., Ahmed, T., Rashid, S. M, M., Anwar, S., Jaman, L., Tara, N., Alam, M. M., Babu, H. M. H. (2011). Realization of reversible logic in DNA computing. 11th IEEE International Conference on Bioinformatics and Bioengineering (BIBE). 24-26 Oct. 2011, Taichung, Taiwan, pp. 261–265.Google Scholar
  12. 12.
    Gupta, V., Parthasarathy, S., Zaki, M. J. (1997). Arithmetic and logic operations with DNA. 3rd Annual DIMACS Workshop on DNA Based Computers. University of Pennsylvania, 23-25 June 1997, pp. 212–220.Google Scholar
  13. 13.
    Stojanovic, M. N., & Stefanovic, D. (2003). Deoxyribozyme-based half-adder. Journal of the American Chemical Society, 125, 6673–6676.CrossRefGoogle Scholar
  14. 14.
    Lederman, H., Macdonald, J., Stefanovic, D., & Stojanovic, M. N. (2006). Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry, 45, 1194–1199.CrossRefGoogle Scholar
  15. 15.
    Inestrosa, E. P., Montenegro, J. M., Collado, D., Suau, R., & Casado, J. (2007). Molecules with multiple light-emissive electronic excited states as a strategy toward molecular reversible logic gates. The Journal of Physical Chemistry C, 111, 6904–6909.CrossRefGoogle Scholar
  16. 16.
    Zoraida, B. S. E., Arock, M., Ronald, B. S. M., Ponalagusamy, R. (2008). A novel generalized model for constructing reusable and reliable logic gates using DNA. Fourth International Conference on Natural Computation.18-20 Oct. 2008, Jinan, China pp. 533–537.Google Scholar
  17. 17.
    Song, T., Wang, S., Wang, X. (2008). The design of reversible gate and reversible sequential circuit based on DNA computing. IEEE 3rd International Conference on Intelligent System and Knowledge Engineering. ISKE, pp. 114–118.Google Scholar
  18. 18.
    Gearheart, C. M., Rouchka, E. C., Arazi, B. (2010). DNA-based dynamic logic circuitry. 53rd IEEE International Midwest Sympossium on Circuits and Systems (MWSCAS),1-4 Aug. 2010, Seattle, WA, USA, pp. 248–251.Google Scholar
  19. 19.
    Roy, P., Dey, D., Sinha, S., & De, D. (2013). Reversible OR Logic gate design using DNA. Proceedings of seventh international conference on bio-inspired computing, theories and applications (BIC-TA), advances in intelligent systems and computing (pp. 355–366). New Delhi: Springer.Google Scholar
  20. 20.
    Ahmed, T., Sarker, A., Sharif, M. I., Rashid, S. M. M., Rahman, M. A., Babo, H. M. H. (2013). A novel approach to design a reversible shifter circuit using DNA. IEEE 26th International SOC Conference (SOCC), 4-6 Sept. 2013, Erlangen, Germany, pp. 256–261.Google Scholar
  21. 21.
    Sarker A., Babu H. M. H., Islam M. S. (2014). A novel approach to perform reversible addition/subtraction operations using deoxyribonucleic acid. IEEE International Symposium on Circuits and Systems (ISCAS), 1-5 June 2014, Melbourne VIC, Australia, pp. 1828–1831.Google Scholar
  22. 22.
    Kari, L., Paun, G., Rozenberg, G., Salomaa, A., & Yu, S. (1998). DNA computing, sticker systems and universality. Acta Informatica, 35, 401–420.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Watson, J. D., & Crick, F. H. C. (1993). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Journal of the American Medical Association., 269, 1966–1967.CrossRefGoogle Scholar
  24. 24.
    Liu, B., Wong, M. L., & Alberts, B. A. (1994). Transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. Proceedings of the National Academy of Science, 91, 10660–10664.CrossRefGoogle Scholar
  25. 25.
    Hamilton, W. C., & Ibers, J. A. (1968). Hydrogen Bonding in Solids. In Methods of molecular structure determination. New York: W. A. Benjamin Inc..Google Scholar
  26. 26.
    Saenger, W. (1984). Principles of nucleic acid structure. New York: Springer-Verlag.CrossRefGoogle Scholar
  27. 27.
    Benenti G., Casati G., Strini G. (2004). Principles of quantum computation and information. Volume I: basic concepts. Singapore: World Scientific Publishing Company.Google Scholar
  28. 28.
    Wood, H., Junghuei Chen, D. J. (2004) Fredkin gate circuits via recombination enzymes, Proceedings Evolutionary Computation, CEC2004Google Scholar
  29. 29.
    Mohammadi, M., & Eshghi, M. (2009). On figures of merit in reversible and quantum logic designs. Quantum Information Processing., 8, 297–318.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Maslov, D.: Web Page:
  31. 31.
    Barenco, A., Bennett, C. H., Cleve, R., Di Vincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J., & Weinfurter, H. (1995). Elementary gates for quantum computation. Physical Review A, 52, 3457–3467.CrossRefGoogle Scholar
  32. 32.
    Smolin, J. A., & DiVincenzo, D. P. (1996). Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Physical Review A, 53, 2855–2856.CrossRefGoogle Scholar
  33. 33.
    Mano, M. M. (1984). Digital design. Prentice Hall, Canada, Incorporated: Englewood Cliffs.Google Scholar
  34. 34.
    Mathur, D., Singh, P., & Singh, S. (2013). Transcendental and optimized digital designing using reversible logic. International Journal of Emerging Science and Engineering (IJESE)., 1, 42–46.Google Scholar
  35. 35.
    Babu, H. M. H., Islam, M. R., Chowdhury, S. M. A., Chowdhury, A. R. (2004). Synthesis of full-adder circuit using reversible logic. Proceedings of the 17th International Conference on VLSI Design (VLSID’04), 9 Jan. 2004, Mumbai, India, pp. 757–760.Google Scholar
  36. 36.
    Adamatzky, A. (2017). Fredkin and Toffoli gates implemented in Oregonator model of Belousov-Zhabotinsky medium. International Journal Bifurcation and Chaos., 27, 1–15.CrossRefzbMATHGoogle Scholar
  37. 37.
    Mohammadi, M., Eshghi, M., Navi, K. (2007). Optimizing the reversible full adder circuit. IEEE EWDTS.  7-10 Sep. 2007, Yerevan, pp. 312–315.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Afsaneh Khoshkhahesh
    • 1
  • Sepideh Ebrahimi
    • 2
  • Reza Sabbaghi-Nadooshan
    • 1
  1. 1.Electrical Engineering DepartmentIslamic Azad University, Central Tehran BranchTehranIran
  2. 2.Electrical Engineering DepartmentIslamic Azad University, Arak BranchArakIran

Personalised recommendations