BioNanoScience

, Volume 8, Issue 1, pp 105–117 | Cite as

Green Synthesis, Characterization and Applications of Noble Metal Nanoparticles Using Myxopyrum serratulum A. W. Hill Leaf Extract

Article

Abstract

In this study, we introduce a facile, green, one-pot and eco-friendly method for the synthesis of silver and gold nanoparticles using microwave-assisted strategy. The aqueous leaf extract of a medicinal plant Myxopyrum serratulum A. W. Hill was used as both stabilizing and reducing agents for this preparation. The synthesized nanoparticles were characterized by using UV-vis spectroscopy, FTIR spectroscopy and XRD, TEM and EDAX analyses. The silver and gold nanoparticles respectively show SPR band at 441 and 539 nm in UV-vis spectrum. The involvement of phytochemicals in the reduction and stabilization of nanoparticles was confirmed by FTIR spectroscopy. The crystalline fcc structure of nanoparticles was assured from XRD analysis. The size and morphology of nanoparticles were obtained from the TEM images. The presences of silver and gold elements were confirmed from their respective EDAX spectrum. The antimicrobial effects of leaf extract and synthesized silver and gold nanoparticles were tested against both bacterial and fungal strains by employing agar well diffusion method. The nanoparticles show high antimicrobial properties. The antioxidant properties were studied by simple DPPH assay. The nanoparticles exhibited better DPPH scavenging activities compared to leaf extract. In addition, it has been shown that the synthesized silver and gold nanoparticles functioned as an effective catalyst for the reduction dyes viz. 4- nitrophenol, methylene blue and Congo red by sodium borohydride.

Keywords

Myxopyrum serratulum A. W. Hill Silver nanoparticles Gold nanoparticles Antimicrobial Antioxidant Catalysis 

Notes

Acknowledgements

Remya Vijayan is thankful to the University Grants Commission (UGC) for the financial assistance (JRF).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12668_2017_433_MOESM1_ESM.docx (156 kb)
Fig. S1 (DOCX 156 kb)
12668_2017_433_MOESM2_ESM.docx (106 kb)
Fig. S2 (DOCX 106 kb)
12668_2017_433_MOESM3_ESM.docx (64 kb)
Fig. S3 (DOCX 64 kb)

References

  1. 1.
    Roopan, S. M., Surendra, T. V., Elango, G., & Kumar, S. H. S. (2014). Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Applied Microbiology and Biotechnology, 98(12), 5289–5300. doi: 10.1007/s00253-014-5736-1.CrossRefGoogle Scholar
  2. 2.
    Padalia, H., Moteriya, P., & Chanda, S. (2014). Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arabian Journal of Chemistry, 8(5), 732–741. doi: 10.1016/j.arabjc.2014.11.015.CrossRefGoogle Scholar
  3. 3.
    Rajan, A., Vilas, V., & Philip, D. (2015). Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. Journal of Molecular Liquids, 212, 331–339. doi: 10.1016/j.molliq.2015.09.013.CrossRefGoogle Scholar
  4. 4.
    Sujin Jeba Kumar, T., Balavigneswaran, C. K., Moses Packiaraj, R., Veeraraj, A., Prakash, S., Natheer Hassan, Y., & Srinivasakumar, K. P. (2013). Green synthesis of silver nanoparticles by Plumbago Indica and its antitumor activity against Dalton’s lymphoma ascites model. BioNanoScience, 3(4), 394–402. doi: 10.1007/s12668-013-0102-9.CrossRefGoogle Scholar
  5. 5.
    Zhou, Y., Kong, Y., Kundu, S., Cirillo, J. D., & Liang, H. (2012). Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. Journal of Nanobiotechnology, 10(1), 19. doi: 10.1186/1477-3155-10-19.CrossRefGoogle Scholar
  6. 6.
    Geethalakshmi, R., & Sarada, D. V. L. (2013). Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L. Industrial Crops and Products, 51, 107–115. doi: 10.1016/j.indcrop.2013.08.055.CrossRefGoogle Scholar
  7. 7.
    Annavaram, V., Posa, V. R., Uppara, V. G., Jorepalli, S., & Somala, A. R. (2015). Facile green synthesis of silver nanoparticles using Limonia acidissima leaf extract and its antibacterial activity. BioNanoScience, 5(2), 433–444. doi: 10.1007/s12668-015-0168-7.CrossRefGoogle Scholar
  8. 8.
    Poojary, M. M., Passamonti, P., & Adhikari, A. V. (2016). Green synthesis of silver and gold nanoparticles using root bark extract of Mammea suriga: characterization, process optimization, and their antibacterial activity. BioNanoScience, 6(2), 110–120. doi: 10.1007/s12668-016-0199-8.CrossRefGoogle Scholar
  9. 9.
    Quaresma, P., Soares, L., Contar, L., Miranda, A., Osório, I., Carvalho, P. A., Franco, R., & Pereira, E. (2009). Green photocatalytic synthesis of stable Au and Ag nanoparticles. Green Chemistry, 11(11), 1889. doi: 10.1039/b917203n.CrossRefGoogle Scholar
  10. 10.
    Anastas, P. T., & Kirchhoff, M. M. (2002). Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research, 35(9), 686–694. doi: 10.1021/ar010065m.CrossRefGoogle Scholar
  11. 11.
    Yallappa, S., Manjanna, J., Peethambar, S. K., Rajeshwara, A. N., & Satyanarayan, N. D. (2013). Green synthesis of silver nanoparticles using Acacia farnesiana (sweet acacia) seed extract under microwave irradiation and their biological assessment. Journal of Cluster Science, 24(4), 1081–1092. doi: 10.1007/s10876-013-0599-7.CrossRefGoogle Scholar
  12. 12.
    Kahrilas, G. A., Wally, L. M., Fredrick, S. J., Hiskey, M., Prieto, A. L., & Owens, J. E. (2014). Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chemistry & Engineering, 2(3), 367–376. doi: 10.1021/sc4003664.CrossRefGoogle Scholar
  13. 13.
    Joseph, S., & Mathew, B. (2015). Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, 136(PC), 1371–1379. doi: 10.1016/j.saa.2014.10.023.CrossRefGoogle Scholar
  14. 14.
    El-Naggar, M. E., Shaheen, T. I., Fouda, M. M. G., & Hebeish, A. A. (2016). Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles. Carbohydrate Polymers, 136, 1128–1136. doi: 10.1016/j.carbpol.2015.10.003.CrossRefGoogle Scholar
  15. 15.
    Mata, R., Bhaskaran, A., & Sadras, S. R. (2016). Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology, 24, 78–86. doi: 10.1016/j.partic.2014.12.014.CrossRefGoogle Scholar
  16. 16.
    Bhakya, S., Muthukrishnan, S., Sukumaran, M., Muthukumar, M., Sentil Kumar, T., & Rao, M. V. (2015). Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. Bioremediation & Biodegradation, 6(5), 1–9. doi: 10.4172/2155-6199.1000312.Google Scholar
  17. 17.
    Ghosh, S. K., Kundu, S., Mandal, M., & Pal, T. (2002). Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in a micellar medium. Langmuir, 18(23), 8756–8760. doi: 10.1021/la0201974.CrossRefGoogle Scholar
  18. 18.
    Joseph, S., & Mathew, B. (2015). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. Journal of Molecular Liquids, 204, 184–191. doi: 10.1016/j.molliq.2015.01.027.CrossRefGoogle Scholar
  19. 19.
    Noginov, M. a., Zhu, G., Bahoura, M., Adegoke, J., Small, C. E., Ritzo, B. A., Drachev, V. P., & Shalaev, V. M. (2006). Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Optics Letters, 31(20), 3022. doi: 10.1364/OL.31.003022.CrossRefGoogle Scholar
  20. 20.
    Rani, T. S., & Lakshmi, S. S. (2013). Vitro anti-oxidant activity of Myxopyrum Serratulum A. W Hill Int. J. Pharm. Pharm. Sci, 5(4), 545–546.Google Scholar
  21. 21.
    Reddy, V., Venkata, N., & Kotakadi, S. (2015). First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Applied Nanoscience, 5(7), 801–807. doi: 10.1007/s13204-014-0374-6.
  22. 22.
    Chang, S. T., Wu, J. H., Wang, S. Y., Kang, P. L., Yang, N. S., & Shyur, L. F. (2001). Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal of Agricultural and Food Chemistry, 49(7), 3420–3424.CrossRefGoogle Scholar
  23. 23.
    Tu, W., & Liu, H. (2000). Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Journal of Materials Chemistry, 10, 2207–2211. doi: 10.1021/cm990637l.CrossRefGoogle Scholar
  24. 24.
    Arunachalam, K. D., Annamalai, S. K., & Hari, S. (2013). One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. International Journal of Nanomedicine, 8, 1307–1315. doi: 10.2147/IJN.S36670.CrossRefGoogle Scholar
  25. 25.
    Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. doi: 10.1016/j.biotechadv.2008.09.002.CrossRefGoogle Scholar
  26. 26.
    Park, Y. (2014). A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicological Research, 30(3), 169–178. doi: 10.5487/TR.2014.30.3.169.CrossRefGoogle Scholar
  27. 27.
    Sridhara, V., Pratima, K., Krishnamurthy, G., & Sreekanth, B. (2013). Vegetable assisted synthesis of silver nanoparticles and its antibacterial activity. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 53–57.Google Scholar
  28. 28.
    Gupta, V. K., Atar, N., Yola, M. L., Üstündaǧ, Z., & Uzun, L. (2014). A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Research, 48(1), 210–217. doi: 10.1016/j.watres.2013.09.027.CrossRefGoogle Scholar
  29. 29.
    Panigrahi, S., Basu, S., Praharaj, S., Pande, S., Jana, S., Pal, G. S. K., & Pal, T. (2009). Sythesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneoue and homogeneous catalytic process. Journal of Physical Chemistry C, 111, 4596.CrossRefGoogle Scholar
  30. 30.
    Saha, S., Pal, A., Kundu, S., Basu, S., & Pal, T. (2010). Photochemical green synthesis of calcium-alginate-stabilized ag and au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir, 26(4), 2885–2893. doi: 10.1021/la902950x.CrossRefGoogle Scholar
  31. 31.
    Guadie Assefa, A., Adugna Mesfin, A., Legesse Akele, M., Kokeb Alemu, A., Gangapuram, B. R., Guttena, V., & Alle, M. (2016). Microwave-assisted green synthesis of gold nanoparticles using Olibanum gum (Boswellia serrate) and its catalytic reduction of 4-nitrophenol and hexacyanoferrate (III) by sodium borohydride. Journal of Cluster Science, 28(3),917–935. doi: 10.1007/s10876-016-1078-8.
  32. 32.
    Pradhan, N., Pal, A., & Pal, T. (2002). Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 196(2–3), 247–257. doi: 10.1016/S0927-7757(01)01040-8.CrossRefGoogle Scholar
  33. 33.
    Pal, T., De, S., Jana, N. R., Pradhan, N., Mandal, R., Pal, A., Beezer, A. E., & Mitchell, J. C. (1998). Organized media as redox catalysts. Langmuir, 14(17), 4724–4730. doi: 10.1021/la980057n.CrossRefGoogle Scholar
  34. 34.
    Small, J. M., & Hintelmann, H. (2007). Methylene blue derivatization then LC-MS analysis for measurement of trace levels of sulfide in aquatic samples. Analytical and Bioanalytical Chemistry, 387(8), 2881–2886. doi: 10.1007/s00216-007-1140-3.CrossRefGoogle Scholar
  35. 35.
    Kavitha, D., & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98(1), 14–21. doi: 10.1016/j.biortech.2005.12.008.CrossRefGoogle Scholar
  36. 36.
    Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2006). Biodegradation of azo dye C.I. Acid red 88 by an anoxic - aerobic sequential bioreactor. Dyes and Pigments, 70(1), 1–7. doi: 10.1016/j.dyepig.2004.12.021.CrossRefGoogle Scholar
  37. 37.
    Alle, M., & Guttena, V. (2015). Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. International Nano Letters, 5(4), 215–222. doi: 10.1007/s40089-015-0158-3.CrossRefGoogle Scholar
  38. 38.
    Farzaneh, F., & Haghshenas, S. (2012). Facile synthesis and characterization of Nanoporous NiO with folic acid as photodegradation catalyst for Congo red. Materials Sciences and Applications, 3(10), 697–703. doi: 10.4236/msa.2012.310102.CrossRefGoogle Scholar
  39. 39.
    Wei, D., Ye, Y., Jia, X., Yuan, C., & Qian, W. (2010). Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydrate Research, 345(1), 74–81. doi: 10.1016/j.carres.2009.10.008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations