Skip to main content
Log in

Magnetic Beads Compatibility as DNA Hybridization Labels in Integrated Thermal-Magnetic Biosensor

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this paper, we investigated the applicative using of thermal-magnetic biosensor (TMAGS) for DNA detection. TMAGS is a planar device composed by a primary microcoil able to generate a magnetic field which induces a voltage equal and opposite on two secondary coils. The presence of magnetic material on one of the two secondary coils causes a variation of induced magnetic field especially in the area where the magnetic material is located. In particular, here, we studied the compatibility of two different typologies of beads (MNB1 and MNB2) as magnetic labels towards DNA hybridization process in TMAGS device. These two types of beads differ in size (1 and 0.1 μm), magnetic material location (core or shell), and chemical surface proprieties (electrostatic or covalent bonds possible). In particular, in the first part of the work, we investigate the response of the TMAGS architectures versus the two-bead topology and we found MNB1 exhibits a better output voltage signal (on average 30% higher than the voltage signal of MNB2). On the contrary, when they are employed as magnetic label in a real DNA hybridization process in TMAGS device, only MNB2 typology gives positive results. We ascertain that both the size of the bead and the nature of the chemical bond between the magnetic label (beads) and the DNA target, that must be a covalent bond, play a key role on the success of hybridization reaction. Therefore, a compromise between magnetic content (bead size) and nature of bead-target chemical bond must be selected for the future employment of these devices in molecular detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chin, C. D., Chin, S. Y., Laksanasopin, T., & Sia, S. K. (2013). Low cost microdevice for point-of-care testing. In D. Issadore & R. M. Westervelt (Eds.), Point of care diagnostics on a chip. Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  2. Jung, W., Han, J., Choi, J. W., & Ahn, C. H. (2007). Point-of-care-testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectronic Engineering, 132, 46–57.

    Article  Google Scholar 

  3. Su, W., Gao, X., Jiang, L., & Qin, J. (2015). Microfluidic platform towards point-of-care diagnostics in infectious diseases. Journal of Chromatography A, 1377, 13–26.

    Article  Google Scholar 

  4. Ahmad, F., & Hashsham, S. A. (2012). Miniaturised nucleic acid amplification systems for rapis and point-of-care diagnostics. A review – Analytica Chimica Acta, 733, 1–15.

    Article  Google Scholar 

  5. Higuchi, R., Dollinger, G., Walsh, P. S., & Griffith, R. (1992). Simultaneous amplification and detection of specific DNA sequences. Biotechnology, 10, 413–417.

    Article  Google Scholar 

  6. Wilhelm, J., & Pingoud, A. (2003). Real-time polymerase chain reaction. Chem BioChem., 4, 1120–1128.

    Google Scholar 

  7. Foglieni, B., Brisci, A., San Biagio, F., Di Pietro, P., Petralia, S., Conoci, S., Ferrari, M., & Cremonesi, L. (2010). Molecular diagnostics on a lab-on-chip device. A new advanced solution for mutation detection in gene-diseases. Clinical Chemistry and Laboratory Medicine, 48, 329–336.

    Article  Google Scholar 

  8. Santangelo, M. F., Sciuto, E. L., Busacca, A. C., Petralia, S., Conoci, S., & Libertino, S. (2015). SiPM as miniaturised optical biosensor for DNA-microarray applications. Sensing and Biosensing Research, 6, 95–98.

    Article  Google Scholar 

  9. Santangelo, M. F., Sciuto, E. L., Busacca, A. C., Petralia, S., Conoci, S. & Libertino, S. (2016). Novel Si-based technologies for bio-sensing applications. IEEE Journal of Selected Topics in Quantum Electronics, 22(3)

  10. Almassian, D. R., Cockrell, L. M., & Nelson, W. M. (2013). Portable nucleic acid and thermocycler. Chemical Society Reviews, 42, 8769.

    Article  Google Scholar 

  11. Mohammeda, M. I., Haswellb, S., & Gibsona, I. (2015). Lab-on-a-chip or chip-in-a-lab: challenges of commercialization lost in translation. Procedia Technology, 20, 54–59.

    Article  Google Scholar 

  12. Libertino, S., Conoci, S., Scandurra, A., & Spinella, R. C. (2013). Biosensor integration on Si-based devices: feasibility studies and examples. Sensors & Actuators B: chemical, 179, 240–251.

    Article  Google Scholar 

  13. Conoci, S., Mascali, A., & Pappalardo, F. (2014). Synthesis, DNA binding properties and electrochemistry to an electrode-bound DNA of a novel anthracene-viologen conjugate. RSC Advances, 4, 2845–2850.

    Article  Google Scholar 

  14. Petralia, S., Castagna, M. E., Cappello, E., Puntoriero, F., Trovato, E., Gagliano, A., & Conoci, S. (2015). A miniaturized silicon based device for nucleic acids electrochemical detection. Sensing and Biosensing Research, 6, 90–94.

    Article  Google Scholar 

  15. Ghionea, S., Dhagat, P., & Jander, A. (2008). Ferromagnetic resonance detection for magnetic microbead sensors. IEEE Sensors Journal, 8, 896.

    Article  Google Scholar 

  16. Serre, C., Martìnes, S., Perez-Rodrìguez, A., Morante, J. R., Esteve, J., & Montserrat, J. U. (2006). Si technology based microinductive devices forbiodetection applications. Sensors and Actuators A, 132, 499–505.

    Article  Google Scholar 

  17. Baglio, S., Castorina, S., & Savalli, N. (2005). Integrated inductive sensors for the detection of magnetic microparticles. IEEE Sensors Journal, 5, 372–375.

    Article  Google Scholar 

  18. Andò, B., Baglio, S., Beninato, A., Fallica, G., Marletta, V., & Pitrone, N. (2009). Analysis and design of inductive biosensors for magnetic immunoassay. XIX IMEKO World Congress Fundamental and Applied Metrology September Lisbon, Portugal (pp. 6–11).

  19. Castagna, M. E., Petralia, S., Amore, M. G., Cappello, E., Beninato, A., Sinatra, V., Baglio, S., & Conoci, S. (2015). A novel silicon based mags-biosensor for nucleic acid detection by magnetoelectronic transduction. Sensing and Biosensing Research, 6, 85–89.

    Article  Google Scholar 

  20. Beninato, A., Sinatra, V., Tosto, T., Castagna, M. E., Petralia, S., Conoci, S., & Baglio, S. (2016). Inductive integrated biosensor with extended operative range for detection of magnetic beads for magnetic immunoassay. IEEE Transactions on Instrumentation and Measurements, 66(Issue 2), 348–359.

    Google Scholar 

  21. Palmieri, M., Alessi, E., Conoci, S., Marchi, M., & Panvini, G. (2008) Develop the “In-Check” platform for diagnostic applications. Proceedings of SPIE, 6886, Microfluidics, BioMEMS, and Medical Microsystems VI, 6886–01.

  22. Mohan, S. S., del Mar Hershenson, M., Boyd, S. P., & Lee, T. H. (1999). Simple accurate expressions for planar spiral 2 inductances. IEEE Journal od Solid-State Circuits, 34, 1419–1424.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Conoci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petralia, S., Castagna, M.E., Beninato, A. et al. Magnetic Beads Compatibility as DNA Hybridization Labels in Integrated Thermal-Magnetic Biosensor. BioNanoSci. 7, 485–491 (2017). https://doi.org/10.1007/s12668-017-0410-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0410-6

Keywords

Navigation