Chance-constrained optimization-based solar microgrid design and dispatch for radial distribution networks


We consider a solar microgrid design and dispatch problem using an adaptive stochastic optimization framework. First, we propose a two-stage mixed-integer model for optimal placement and planning of distributed generation (DG) units and energy storage system units. We incorporate time series modeling into stochastic optimization approach to characterize the solar irradiance uncertainty. In the first stage, design decisions (e.g., location and sizing of DGs) are made and in the second stage, dispatch decisions (e.g., how much to generate, how much to store) are made such that electricity demand is met in a reliable and cost effective way. Chance constraints are employed to control the real load shedding within a predefined probability level. Then, we propose a combined sample average approximation (SAA) and linearization technique to solve this problem more efficiently. The advantage of this approach is that no additional binary variables are introduced while reformulating the chance constraints. Computational time, quality of solution, and load shedding percentage are compared with the traditional SAA. Moreover, we carry out a comprehensive out-of-sample simulation on a real-world case study in the state of Arizona assessing the effectiveness of our approach. Numerical experiments demonstrate that the chance constraints are effective tools for control of load shedding in distributed generation and the proposed approach outperforms traditional methods both in terms of true load shedding percentage and computational time.

This is a preview of subscription content, access via your institution.

Fig. 1

Source: [33]

Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Data available online at


  1. 1.

    Yadav, A., Srivastava, L.: Optimal placement of distributed generation: an overview and key issues. In: 2014 International Conference on Power Signals Control and Computations (EPSCICON), pp. 1–6. IEEE (2014)

  2. 2.

    Georgilakis, P.S., Hatziargyriou, N.D.: Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans. Power Syst. 28(3), 3420–3428 (2013)

    Article  Google Scholar 

  3. 3.

    Zhaoyu, W., Bokan, C., Jianhui, W., Miroslav, M.B.: Stochastic DG placement for conservation voltage reduction based on multiple replications procedure. IEEE Trans. Power Deliv. 30(3), 1039–1047 (2015)

    Article  Google Scholar 

  4. 4.

    Prakash, P., Khatod, D.K.: Optimal sizing and siting techniques for distributed generation in distribution systems: a review. Renew. Sustain. Energy Rev. 57, 111–130 (2016)

    Article  Google Scholar 

  5. 5.

    Carpentier, J.: Contribution a l’etude du dispatching economique. Bulletin de la Societe Francaise des Electriciens 3(1), 431–447 (1962)

    Google Scholar 

  6. 6.

    Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Trans. Power Appar. Syst. 87(10), 1866–1876 (1968)

    Article  Google Scholar 

  7. 7.

    Momoh, J.A., Adapa, R., El-Hawary, M.E.: A review of selected optimal power flow literature to 1993. i. Nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14(1), 96–104 (1999)

    Article  Google Scholar 

  8. 8.

    Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993. ii. Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999)

    Article  Google Scholar 

  9. 9.

    Abido, M.A.: Optimal power flow using particle swarm optimization. Int. J. Electr. Power Energy Syst. 24(7), 563–571 (2002)

    Article  Google Scholar 

  10. 10.

    Geidl, M., Andersson, G.: Optimal power flow of multiple energy carriers. IEEE Trans. Power Syst. 22(1), 145–155 (2007)

    Article  Google Scholar 

  11. 11.

    Baran, M.E., Wu, F.F.: Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 4(1), 725–734 (1989)

    Article  Google Scholar 

  12. 12.

    Baran, M., Wu, F.F.: Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans. Power Deliv. 4(1), 735–743 (1989)

    Article  Google Scholar 

  13. 13.

    Zhu, Y., Tomsovic, K.: Optimal distribution power flow for systems with distributed energy resources. Int. J. Electr. Power Energy Syst. 29(3), 260–267 (2007)

    Article  Google Scholar 

  14. 14.

    Ochoa, L.F., Keane, A., Harrison, G.P.: Minimizing the reactive support for distributed generation: enhanced passive operation and smart distribution networks. IEEE Trans. Power Syst. 26(4), 2134–2142 (2011)

    Article  Google Scholar 

  15. 15.

    Moradi, M.H., Abedini, M.: A combination of genetic algorithm and particle swarm optimization for optimal dg location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 34(1), 66–74 (2012)

    Article  Google Scholar 

  16. 16.

    Hung, D.Q., Mithulanathan, N.: Multiple distributed generator placement in primary distribution networks for loss reduction. IEEE Trans. Industr. Electron. 60(4), 1700–1708 (2013)

    Article  Google Scholar 

  17. 17.

    Dall’Anese, E., Zhu, H., Giannakis, G.B.: Distributed optimal power flow for smart microgrids. IEEE Trans. Smart Grid 4(3), 1464–1475 (2013)

    Article  Google Scholar 

  18. 18.

    Levron, Y., Guerrero, J.M., Beck, Y.: Optimal power flow in microgrids with energy storage. IEEE Trans. Power Syst. 28(3), 3226–3234 (2013)

    Article  Google Scholar 

  19. 19.

    Zhang, B., Lam, A.Y.S., Domínguez-García, A.D., Tse, D.: An optimal and distributed method for voltage regulation in power distribution systems. IEEE Trans. Power Syst. 30(4), 1714–1726 (2015)

    Article  Google Scholar 

  20. 20.

    Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., Seethapathy, R.: Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst. 25(1), 360–370 (2010)

    Article  Google Scholar 

  21. 21.

    Zhaoyu, W., Bokan, C., Jianhui, W., Jinho, K., Miroslav, M.B.: Robust optimization based optimal DG placement in microgrids. IEEE Trans. Smart Grid 5(5), 2173–2182 (2014)

    Article  Google Scholar 

  22. 22.

    Bazrafshan, M., Gatsis, N.: Risk-averse placement and sizing of photovoltaic inverters in radial distribution networks. In: 2015 49th Asilomar Conference on Signals, Systems and Computers, pp. 885–889. IEEE (2015)

  23. 23.

    Sun, B., Krokhmal, P., Chen, Y.: Risk-averse capacity planning for renewable energy production. Energy Syst. 9, 1–34 (2018)

    Article  Google Scholar 

  24. 24.

    Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Li, P., Arellano-Garcia, H., Wozny, G.: Chance constrained programming approach to process optimization under uncertainty. Comput. Chem. Eng. 32(1), 25–45 (2008)

    Article  Google Scholar 

  26. 26.

    Ozturk, U.A., Mazumdar, M., Norman, B.A.: A solution to the stochastic unit commitment problem using chance constrained programming. IEEE Trans. Power Syst. 19(3), 1589–1598 (2004)

    Article  Google Scholar 

  27. 27.

    Liu, Z., Wen, F., Ledwich, G.: Optimal siting and sizing of distributed generators in distribution systems considering uncertainties. IEEE Trans. Power Deliv. 26(4), 2541–2551 (2011)

    Article  Google Scholar 

  28. 28.

    Zhang, H., Li, P.: Chance constrained programming for optimal power flow under uncertainty. IEEE Trans. Power Syst. 26(4), 2417–2424 (2011)

    Article  Google Scholar 

  29. 29.

    Cao, Y., Tan, Y., Li, C., Rehtanz, C.: Chance-constrained optimization-based unbalanced optimal power flow for radial distribution networks. IEEE Trans. Power Deliv. 28(3), 1855–1864 (2013)

    Article  Google Scholar 

  30. 30.

    Jin, T., Tian, Y., Zhang, C.W., Coit, D.W.: Multicriteria planning for distributed wind generation under strategic maintenance. IEEE Trans. Power Deliv. 28(1), 357–367 (2013)

    Article  Google Scholar 

  31. 31.

    Hejazi, H., Mohsenian-Rad, H.: Energy storage planning in active distribution grids: a chance-constrained optimization with non-parametric probability functions. IEEE Trans. Smart Grid 9, 1972–1985 (2016)

    Google Scholar 

  32. 32.

    Turitsyn, K., Šulc, P., Backhaus, M.C.: Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration. In: Power and Energy Society General Meeting, 2010 IEEE, pp. 1–6. IEEE (2010)

  33. 33.

    Baran, M.E., Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 4(2), 1401–1407 (1989)

    Article  Google Scholar 

  34. 34.

    Yeh, H.-G., Gayme, D.F., Low, S.H.: Adaptive var control for distribution circuits with photovoltaic generators. IEEE Trans. Power Syst. 27(3), 1656–1663 (2012)

    Article  Google Scholar 

  35. 35.

    Wang, Z., Chen, B., Wang, J., et al.: Decentralized energy management system for networked microgrids in grid-connected and islanded modes. IEEE Trans. Smart Grid 7(2), 1097–1105 (2016)

    Article  Google Scholar 

  36. 36.

    Koutroulis, E., Kolokotsa, D., Potirakis, A., Kalaitzakis, K.: Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Sol. Energy 80(9), 1072–1088 (2006)

    Article  Google Scholar 

  37. 37.

    Boyson, W.E., Galbraith, G.M., King, D.L., Gonzalez, S.: Performance model for grid-connected photovoltaic inverters. Technical report, Sandia National Laboratories (2007)

  38. 38.

    Dall’Anese, E., Giannakis, G.B.: Optimal distributed generation placement in distribution systems via semidefinite relaxation. In: Asilomar Conference on Signals, Systems and Computers, pp. 369–373. IEEE (2013)

  39. 39.

    Niknam, T., Zare, M., Aghaei, J.: Scenario-based multiobjective volt/var control in distribution networks including renewable energy sources. IEEE Trans. Power Deliv. 27(4), 2004–2019 (2012)

    Article  Google Scholar 

  40. 40.

    Karaki, S.H., Chedid, R.B., Ramadan, R.: Probabilistic performance assessment of autonomous solar-wind energy conversion systems. IEEE Trans. Energy Convers. 14(3), 766–772 (1999)

    Article  Google Scholar 

  41. 41.

    Zhaoxia, S., Weiwei, L., Jinfeng, Z., Qiangmin, L., Tianci, L.: A planning method for siting and sizing of distributed generation based on chance-constrained programming. In: 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 527–531. IEEE (2015)

  42. 42.

    Mora-Lopez, L.L., Sidrach-de-Cardona, M.: Multiplicative ARMA models to generate hourly series of global irradiation. Solar Energy 63(5), 283–291 (1998)

    Article  Google Scholar 

  43. 43.

    Boland, J.: Time series modelling of solar radiation. In: Badescu, V. (ed.) Modeling Solar Radiation at the Earth’s Surface, pp. 283–312. Springer, Berlin (2008)

    Google Scholar 

  44. 44.

    Reikard, G.: Predicting solar radiation at high resolutions: a comparison of time series forecasts. Sol. Energy 83(3), 342–349 (2009)

    Article  Google Scholar 

  45. 45.

    Box, G.E.P., Jenkins, G.M., Reinsel, C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)

    Google Scholar 

  46. 46.

    National renewable energy laboratory solar prospector (2012). Available online: Accessed 25 Feb 2017

  47. 47.

    Team, R Core.: R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing; 2014 (2014)

  48. 48.

    Adel Mellit and Alessandro Massi Pavan: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected pv plant at trieste, italy. Sol. Energy 84(5), 807–821 (2010)

    Article  Google Scholar 

  49. 49.

    Ochoa, L.F., Dent, C.J., Harrison, G.P.: Distribution network capacity assessment: variable DG and active networks. IEEE Trans. Power Syst. 25(1), 87–95 (2010)

    Article  Google Scholar 

  50. 50.

    Ochoa, L.F., Harrison, G.P.: Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation. IEEE Trans. Power Syst. 26(1), 198–205 (2011)

    Article  Google Scholar 

  51. 51.

    Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142(2), 399–416 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Wang, Q., Guan, Y., Wang, J.: A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output. IEEE Trans. Power Syst. 27(1), 206–215 (2012)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Cheng, J., Lisser, A.: A second-order cone programming approach for linear programs with joint probabilistic constraints. Oper. Res. Lett. 40(5), 325–328 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Kersting, W.H.: Radial distribution test feeders. IEEE Trans. Power Syst. 6(3), 975–985 (1991)

    Article  Google Scholar 

  55. 55.

    Pinheiro, J.M.S., Dornellas, C.R.R., Th Schilling, M., Melo, A.C.G., Mello, J.C.O.: Probing the new ieee reliability test system (rts-96): Hl-ii assessment. IEEE Trans. Power Syst. 13(1), 171–176 (1998)

    Article  Google Scholar 

  56. 56.

    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Mathematical Programming Language, p. 07974. AT&T Bell Laboratories, Murray Hill (1987)

    Google Scholar 

Download references


This work was supported in part by the Bisgrove Scholars program (sponsored by Science Foundation Arizona) Grant BSP 0818-17, AFOSR Grants FA9550-19-1-0161, and DTRA Grant HDTRA1-16-1-0054.

Author information



Corresponding author

Correspondence to Pavlo Krokhmal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dashti, H., Cheng, J. & Krokhmal, P. Chance-constrained optimization-based solar microgrid design and dispatch for radial distribution networks. Energy Syst (2021).

Download citation


  • Distributed generation (DG)
  • Solar photovoltaics (PV)
  • Chance constrained programming (CCP)
  • Sample average approximation (SAA)
  • Optimal power flow (OPF)
  • Energy storage systems (ESS)