EMSx: a numerical benchmark for energy management systems


Inserting renewable energy in the electric grid in a decentralized manner is a key challenge of the energy transition. However, at local scale, both production and demand display erratic behavior, which makes it challenging to match them. It is the goal of Energy Management Systems (EMS) to achieve such balance at least cost. We present EMSx, a numerical benchmark for testing control algorithms for the management of electric microgrids equipped with a photovoltaic unit and an energy storage system. EMSx is made of three key components: the EMSx dataset, provided by Schneider Electric, contains a diverse pool of realistic microgrids with a rich collection of historical observations and forecasts; the EMSx mathematical framework is an explicit description of the assessment of electric microgrid control techniques and algorithms; the EMSx software EMSx.jl is a package, implemented in the Julia language, which enables to easily implement a microgrid controller and to test it. All components of the benchmark are publicly available, so that other researchers willing to test controllers on EMSx may reproduce experiments easily. Eventually, we showcase the results of standard microgrid control methods, including Model Predictive Control, Open Loop Feedback Control and Stochastic Dynamic Programming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    When the horizon extends further than the period, we truncate the lookahead window to \(\min (H, T-t{+}1)\).

  2. 2.

    We recall that gains were defined relatively to the cost performance of a dummy controller.


  1. 1.

    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont, MA (1995)

    Google Scholar 

  2. 2.

    Bertsekas, D.P.: Dynamic programming and suboptimal control: a survey from ADP to MPC. Eur. J. Control 11(4–5), 310–334 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bertsekas, D.P.: Dynamic Programming and Optimal Control: Approximate Dynamic Programming, 4th edn. Athena Scientific, Belmont (2012)

    Google Scholar 

  4. 4.

    Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145 (2012)

  5. 5.

    Carpentier, P., Chancelier, J.P., Cohen, G., De Lara, M.: Stochastic multi-stage optimization. In: Asmussen, S., Glynn, P.W., Kurtz, T.G., Le Jan, Y. (eds.) Probability Theory and Stochastic Modelling, vol. 75. Springer, Cham (2015)

  6. 6.

    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer series in statistics, New York (2001)

    Google Scholar 

  7. 7.

    Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice—a survey. Automatica 25(3), 335–348 (1989)

    Article  Google Scholar 

  8. 8.

    Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with lstm recurrent networks. J. Mach. Learn. Res. 3(Aug), 115–143 (2002)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Haessig, P., Kovaltchouk, T., Multon, B., Ahmed, H.B., Lascaud, S.: Computing an optimal control policy for an energy storage. arXiv preprint arXiv:1404.6389 (2014)

  10. 10.

    Hafiz, F., Awal, M., de Queiroz, A.R., Husain, I.: Real-time stochastic optimization of energy storage management using rolling horizon forecasts for residential pv applications. In: 2019 IEEE Industry Applications Society Annual Meeting, pp. 1–9. IEEE (2019)

  11. 11.

    Heymann, B., Bonnans, J.F., Silva, F., Jimenez, G.: A stochastic continuous time model for microgrid energy management. In: 2016 European Control Conference (ECC), pp. 2084–2089. IEEE (2016)

  12. 12.

    Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J.: Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond. Int. J. Forecas. 32(3), 896–913 (2016)

  13. 13.

    Kriett, P.O., Salani, M.: Optimal control of a residential microgrid. Energy 42(1), 321–330 (2012)

    Article  Google Scholar 

  14. 14.

    Lohndorf, N., Shapiro, A.: Modeling time-dependent randomness in stochastic dual dynamic programming. Eur. J. Oper. Res. 273(2), 650–661 (2019)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., Cañizares, C.A., Iravani, R., Kazerani, M., Hajimiragha, A.H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., et al.: Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)

    Article  Google Scholar 

  16. 16.

    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. Wiley, New York (1994)

    Google Scholar 

  17. 17.

    Rigaut, T., Carpentier, P., Chancelier, J.P., De Lara, M., Waeytens, J.: Stochastic optimization of braking energy storage and ventilation in a subway station. IEEE Trans. Power Syst. 34(2), 1256–1263 (2018)

    Article  Google Scholar 

  18. 18.

    Shapiro, A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209(1), 63–72 (2011)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2014)

    Google Scholar 

  20. 20.

    Staid, A., Watson, J.P., Wets, R.J.B., Woodruff, D.L.: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators. Wind Energy 20(12), 1911–1925 (2017)

    Article  Google Scholar 

  21. 21.

    Woodruff, D.L., Deride, J., Staid, A., Watson, J.P., Slevogt, G., Silva-Monroy, C.: Constructing probabilistic scenarios for wide-area solar power generation. Solar Energy 160, 153–167 (2018)

    Article  Google Scholar 

Download references


We thank Efficacity and Schneider Electric for the PhD funding of Adrien Le Franc. Additionally, we are grateful for the feedbacks and data supply from Peter Pflaum and Claude Le Pape (Schneider Electric) and we thank our colleague Tristan Rigaut (Efficacity) for insightful tips about the Julia language. We thank the Guest Editor and the Reviewers for their insightful comments that helped improve the manuscript.

Author information



Corresponding author

Correspondence to Adrien Le Franc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le Franc, A., Carpentier, P., Chancelier, JP. et al. EMSx: a numerical benchmark for energy management systems. Energy Syst (2021). https://doi.org/10.1007/s12667-020-00417-5

Download citation


  • Electric microgrid
  • Multistage stochastic optimization
  • Numerical benchmark