Skip to main content

Advertisement

Log in

Robust disturbance rejection control of grid-connected fuel cell converters with grid support ability under unbalanced faults

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This work proposes a high-performance, robust and low-complexity control strategy for grid-connected fuel cell converters that operate under several performance limiting conditions such as grid faults, parametric and modeling uncertainties, unknown disturbances, step changes and noise. The strategy enables the fuel cell-based distributed generators to ride through balanced and unbalanced grid faults and fulfills the modern grid code requirements that mandate them to actively support the grid in case of contingencies. The controller is built by combining disturbance rejection control and repetitive control, both having simple structures and attractive performance features. Moreover, during grid faults, the strategy manages to keep the active power delivered to the grid constant and the phase currents sinusoidal, without a phase locked loop or the positive and negative sequence components of the unbalanced grid voltages or currents. As a result, the controller’s computational and structural complexity are reduced without compromising its performance. Several test cases are run using the \(\hbox {SimPowerSystems}^{\mathrm{TM}}\) toolbox of MATLAB/Simulink computing environment to demonstrate the response of the proposed strategy and ascertain its performance under grid faults, parametric uncertainties, noise and unknown disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abadlia, I., Adjabi, M., Bouzeria, H.: Sliding mode based power control of grid-connected photovoltaic-hydrogen hybrid system. Int. J. Hydrog. Energy 42(47), 28171–28182 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.215

    Article  Google Scholar 

  2. Al-Shetwi, A.Q., Sujod, M.Z.: Grid-connected photovoltaic power plants: a review of the recent integration requirements in modern grid codes. Int. J. Energy Res. 42(5), 1849–1865 (2018). https://doi.org/10.1002/er.3983

    Article  Google Scholar 

  3. Bernstein, P.A., Heuer, M., Wenske, M.: Fuel cell system as a part of the smart grid. In: 2013 IEEE Grenoble Conference, IEEE, pp. 1–4 (2013). https://doi.org/10.1109/PTC.2013.6652334

  4. Blanchard, J.: Smart energy solutions using fuel cells. In: 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), IEEE, pp. 1–8 (2011). https://doi.org/10.1109/INTLEC.2011.6099882

  5. Bonan, G., Flores, J., Coutinho, D., Pereira, L., Gomes da, Silva J.: Repetitive controller design for uninterruptible power supplies: an LMI approach. In: IECON 2011—37th Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp. 704–709 (2011). https://doi.org/10.1109/IECON.2011.6119396

  6. Eid, A.: Utility integration of PV–wind–fuel cell hybrid distributed generation systems under variable load demands. Int. J. Electr. Power Energy Syst. 62, 689–699 (2014). https://doi.org/10.1016/j.ijepes.2014.05.020

    Article  Google Scholar 

  7. Erfanmanesh, T., Dehghani, M.: Performance improvement in grid-connected fuel cell power plant: an LPV robust control approach. Int. J. Electr. Power Energy Syst. 67, 306–314 (2015). https://doi.org/10.1016/j.ijepes.2014.12.006

    Article  Google Scholar 

  8. Francis, B.A., Wonham, W.M.: The internal model principle for linear multivariable regulators. Appl. Math. Optim. 2(2), 170–194 (1975). https://doi.org/10.1007/BF01447855

    Article  MathSciNet  MATH  Google Scholar 

  9. Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Basel (2003)

    Book  Google Scholar 

  10. Guo, X., Liu, W., Zhang, X., Sun, X., Lu, Z., Guerrero, J.M.: Flexible control strategy for grid-connected inverter under unbalanced grid faults without PLL. IEEE Trans. Power Electron. 30(4), 1773–1778 (2015). https://doi.org/10.1109/TPEL.2014.2344098

    Article  Google Scholar 

  11. Hajizadeh, A., Golkar, M.A.: Control of hybrid fuel cell/energy storage distributed generation system against voltage sag. Int. J. Electr. Power Energy Syst. 32(5), 488–497 (2010). https://doi.org/10.1016/j.ijepes.2009.09.015

    Article  MATH  Google Scholar 

  12. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009). https://doi.org/10.1109/TIE.2008.2011621

    Article  Google Scholar 

  13. Inoue, T., Nakano, M., Kubo, T., Matsumoto, S., Baba, H.: High accuracy control of a proton synchrotron magnet power supply. IFAC Proc. Vol. 14(2), 3137–3142 (1981). https://doi.org/10.1016/S1474-6670(17)63938-7

    Article  Google Scholar 

  14. Jang, M., Ciobotaru, M., Agelidis, V.G.: A single-phase grid-connected fuel cell system based on a boost-inverter. IEEE Trans. Power Electron. 28(1), 279–288 (2013). https://doi.org/10.1109/TPEL.2012.2199770

    Article  Google Scholar 

  15. Kamal, T., Hassan, S.Z., Espinosa-Trujillo, M.J., Li, H., Flota, M.: An optimal power sharing and power control strategy of photovoltaic/fuel cell/ultra-capacitor hybrid power system. J. Renew. Sustain. Energy 8(3), 035301 (2016). https://doi.org/10.1063/1.4948926

    Article  Google Scholar 

  16. Kim, J.S., Choe, G.Y., Kang, H.S., Lee, B.K.: Robust low frequency current ripple elimination algorithm for grid-connected fuel cell systems with power balancing technique. Renew. Energy 36(5), 1392–1400 (2011). https://doi.org/10.1016/j.renene.2010.10.023

    Article  Google Scholar 

  17. Lin, F.J., Lu, K.C., Ke, T.H.: Probabilistic wavelet fuzzy neural network based reactive power control for grid-connected three-phase PV system during grid faults. Renew. Energy 92, 437–449 (2016). https://doi.org/10.1016/j.renene.2016.02.036

    Article  Google Scholar 

  18. Liu, W.Z., Guo, X.Q., Sulligoi, G., Guan, Y.J., Zhao, X., Wei, B.Z., Savaghebi, M., Guerrero, J.M.: Enhanced power quality and minimized peak current control in an inverter based microgrid under unbalanced grid faults. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, pp. 1–6 (2016). https://doi.org/10.1109/ECCE.2016.7855083

  19. Lofberg, J.: YALMIP : a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), IEEE, pp. 284–289 (2004). https://doi.org/10.1109/CACSD.2004.1393890

  20. Mazumder, S.K., Burra, R.K., Huang, R., Tahir, M., Acharya, K.: A universal grid-connected fuel-cell inverter for residential application. IEEE Trans. Ind. Electron. 57(10), 3431–3447 (2010). https://doi.org/10.1109/TIE.2009.2038943

    Article  Google Scholar 

  21. Merabet, A., Labib, L., Ghias, A.M.: Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability. IEEE Trans. Smart Grid 3053(c), 1–1 (2017). https://doi.org/10.1109/TSG.2017.2694452

    Article  Google Scholar 

  22. Merabet, A., Labib, L., Ghias, A.M., Ghenai, C., Salameh, T.: Robust feedback linearizing control with sliding mode compensation for a grid-connected photovoltaic inverter system under unbalanced grid voltages. IEEE J. Photovolt. 7(3), 828–838 (2017b). https://doi.org/10.1109/JPHOTOV.2017.2667724

    Article  Google Scholar 

  23. Mirhosseini, M., Pou, J., Karanayil, B., Agelidis, V.G.: Resonant versus conventional controllers in grid-connected photovoltaic power plants under unbalanced grid voltages. IEEE Trans. Sustain. Energy 7(3), 1124–1132 (2016). https://doi.org/10.1109/TSTE.2016.2529679

    Article  Google Scholar 

  24. Mojallal, A., Lotfifard, S.: Enhancement of grid connected PV arrays fault ride through and post fault recovery performance. IEEE Trans. Smart Grid, pp. 1–1 (2017). https://doi.org/10.1109/TSG.2017.2748023

  25. Ozsoy, E., Padmanaban, S., Mihet-Popa, L., Fedák, V., Ahmad, F., Akhtar, R., Sabanovic, A.: Control strategy for a grid-connected inverter under unbalanced network conditionsa disturbance observer-based decoupled current approach. Energies 10(7), 1067 (2017). https://doi.org/10.3390/en10071067

    Article  Google Scholar 

  26. Patel, P., Jahnke, F., Lipp, L., Abdallah, T., Josefik, N., Williams, M., Garland, N.: Fuel cells and hydrogen for smart grid. pp 305–313 (2011). https://doi.org/10.1149/1.3562486

  27. Peaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J.: A new robust D-stability condition for real convex polytopic uncertainty. Syst. Control Lett. 40(1), 21–30 (2000). https://doi.org/10.1016/S0167-6911(99)00119-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Raoufat, M.E., Khayatian, A., Mojallal, A.: Performance recovery of voltage source converters with application to grid-connected fuel cell DGs. IEEE Trans. Smart Grid 9(2), 1197–1204 (2018). https://doi.org/10.1109/TSG.2016.2580945

    Article  Google Scholar 

  29. Ro, K., Rahman, S.: Control of grid-connected fuel cell plants for enhancement of power system stability. Renew. Energy 28(3), 397–407 (2003). https://doi.org/10.1016/S0960-1481(02)00042-3

    Article  Google Scholar 

  30. Rodriguez, P., Luna, A., Candela, I., Mujal, R., Teodorescu, R., Blaabjerg, F.: Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans. Ind. Electron. 58(1), 127–138 (2011). https://doi.org/10.1109/TIE.2010.2042420

    Article  Google Scholar 

  31. Saad, N.H., El-Sattar, A.A., Mansour, A.E.A.M.: Improved particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability. Renew. Energy 85, 181–194 (2016). https://doi.org/10.1016/j.renene.2015.06.029

    Article  Google Scholar 

  32. Taher, S.A., Mansouri, S.: Optimal PI controller design for active power in grid-connected SOFC DG system. Int. J. Electr. Power Energy Syst. 60, 268–274 (2014). https://doi.org/10.1016/j.ijepes.2014.02.010

    Article  Google Scholar 

  33. Takaba, K.: Robust servomechanism with preview action for polytopic uncertain systems. Int. J. Robust Nonlinear Control 10(2), 101–111 (2000). https://doi.org/10.1002/(SICI)1099-1239(200002)10:2<101::AID-RNC465>3.0.CO;2-9

  34. Troester, E.: New German grid codes for connecting PV systems to the medium voltage power grid. In: 2nd International Workshop on Concentrating Photovoltaic Power Plants: Optical Design, Production, Grid Connection, pp. 1–4 (2009)

  35. Wang, X., Yang, Z., Fan, B., Xu, W.: Control strategy of three-phase photovoltaic inverter under low-voltage ride-through condition. Math. Probl. Eng. 2015, 1–23 (2015). https://doi.org/10.1155/2015/790584

    Article  MathSciNet  MATH  Google Scholar 

  36. Yamamoto, Y., Hara, S.: Relationships between internal and external stability for infinite-dimensional systems with applications to a servo problem. IEEE Trans. Autom. Control 33(11), 1044–1052 (1988). https://doi.org/10.1109/9.14416

    Article  MathSciNet  MATH  Google Scholar 

  37. Yazdani, A., Iravani, M.R.: Voltage-sourced converters in power systems: modelling, control, and applications, 1st edn. Wiley, Hoboken (2010)

    Book  Google Scholar 

  38. Zhu, Y., Tomsovic, K.: Development of models for analyzing the load-following performance of microturbines and fuel cells. Electr. Power Syst. Res. 62(1), 1–11 (2002). https://doi.org/10.1016/S0378-7796(02)00033-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeel Sabir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabir, A., Ibrir, S. Robust disturbance rejection control of grid-connected fuel cell converters with grid support ability under unbalanced faults. Energy Syst 11, 673–698 (2020). https://doi.org/10.1007/s12667-019-00332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-019-00332-4

Keywords

Navigation