Skip to main content

Advertisement

Log in

A comprehensive review and feasibility study of DC–DC converters for different PV applications: ESS, future residential purpose, EV charging

  • Review Article
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this paper, a comprehensive review of existing high gain DC–DC converter topologies (cascaded, interleaved and coupled inductor technology) is carried out. This consists of the quantitative, qualitative study of all the converters reviewed. Further, the selection method of converters for photovoltaic (PV) based applications is also accomplished reckoning to the concept of critical duty ratio and practical voltage gain. As the critical duty ratio of any DC–DC converter is depending upon the equivalent series resistance (ESR) of the circuit components, the available methods to determine the values of ESR are also discussed in this article. Again, the feasibility study of such reviewed converter topologies are executed in consideration with the PV application fields such as energy storage system (ESS), residential supply, electric vehicle (EV) charging. At last, the review of the available standards in connection with DC distributed generation system is encapsulated in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

V in :

Input voltage

L x :

Inductor; x = 1, 2, 3,…

L px :

Primary inductance; x = 1, 2, 3,…

L sx :

Secondary inductance; x = 1, 2, 3,…

S x :

Active switch; x = 1, 2, 3,…

D x :

Diode; x = 1, 2, 3,…

D :

Duty ratio

D crit :

Critical duty ratio

V 0 :

Output voltage

V DSx :

Switch voltage; x = 1, 2, 3,…

R :

Load resistance

R Lx :

ESR of Lx; x = 1, 2, 3,…

N xp :

Primary number of turns; x = 1, 2

N xs :

Secondary number of turns; x = 1, 2

N :

Turns ratio

C x :

Capacitor; x = 1, 2, 3,…

References

  1. Kumar, D., Zare, F., Ghosh, A.: DC microgrid technology: system architechtures, AC grid interfaces, grounding schemes, power quality, communication networks, applications and standardizations aspects. IEEE Access 5, 12230–12256 (2017)

    Article  Google Scholar 

  2. Wunder, B., Ott, L., Kaiser, J., Han, Y., Fersterra, F., Marz, M.: Overview of different topologies and control strategies for DC microgrids. In: Proceedings of the IEEE International Conference on DC Microgrids, Atlanta, GA, USA, pp 349–354 (2015)

  3. Hakala, T., Lahdeaho, T., Komsi, R.: LVDC pilot implementation in public distribution network. In: Proceeding of International Conference on Electrical Distribution, CIRED 2015 (2015)

  4. May, G.J., et al.: Lead batteries for utility energy storage: a review. J. Energy Storage 15, 145–157 (2018)

    Article  Google Scholar 

  5. An, F., Sauer, A.: Comparison of passenger vehicle fuel economy and greenhouse gas emission standards around the world. In: Pew Cent. Glob. Clim. Chang (2004). http://www.c2es.org/docUploads/ FuelEconomyandGHGStandards_010605_110719.pdf

  6. Heymann, E.: CO2 emissions from cars. Tech. Rep., Deutsche Bank AG, Deutsche Bank Research, Frankfurt am Main, Germany (2014). https://www.dbresearch.com/PROD/DBR_INTERNET_EN-PROD/PROD0000000000346332.pdf

  7. Zimmermann, T., et al.: Review of system topologies for hybrid electrical energy storage systems. J Energy Storage 8, 78–90 (2016)

    Article  Google Scholar 

  8. Zhao, Q., Lee, F.C.: High-efficiency, high step-up DC-DC converters. IEEE Trans. Power Electron. 18(1), 65–73 (2003)

    Article  Google Scholar 

  9. Forouzesh, M., Shen, Y., Yari, K., Siwakoti, Y.P., Blaabjerg, F.: High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems. IEEE Trans. Power Electron. 33(7), 5967–5982 (2018)

    Article  Google Scholar 

  10. Su, G.J., Tang, L.: A reduced-part, triple-voltage DC–DC converter for EV/HEV power management. IEEE Trans. Power Electron. 24(10), 2406–2410 (2009)

    Article  Google Scholar 

  11. Pratt, A., Kumar, P., Aldridge, T.V.: Evaluation of 400 V DC distribution in telco and data centers to improve energy efficiency. In: Proc. INTELEC, pp. 32–39 (2007)

  12. Leyva-Ramos, J., Lopez-Cruz, J.M., Ortiz-Lopez, M.G., Diaz-Saldierna, L.H.: Switching regulator using a high step-up voltage converter for fuel-cell modules. IET Power Electron. 6(8), 1626–1633 (2013)

    Article  Google Scholar 

  13. Velasco-Quesada, G., Guinjoan-Gispert, F., Piqué-López, R., Román-Lumbreras, M., Conesa-Roca, A.: Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems. IEEE Trans. Ind. Electron. 56(11), 4319–4331 (2009)

    Article  Google Scholar 

  14. Tseng, K., Huang, C.: High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Trans. Ind. Electron. 61(3), 1311–1319 (2014)

    Article  Google Scholar 

  15. Young, C., Chen, M., Chang, T., Ko, C., Jen, K.: Cascade Cockcroft-Walton voltage multiplier applied to transformerless high step-up dc–dc converter. IEEE Trans. Ind. Electron. 60(2), 523–537 (2013)

    Article  Google Scholar 

  16. Chen, S., Liang, T., Yang, L., Chen, J.: A boost converter with capacitor multiplier and coupled inductor for ac module applications. IEEE Trans. Ind. Electron. 60(4), 1503–1511 (2013)

    Article  Google Scholar 

  17. Ellis, M.W., von Spakovsky, M.R., Nelson, D.J.: Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc. IEEE 89(12), 1808–1818 (2001)

    Article  Google Scholar 

  18. Ali, A.N.A. et al.: Survey of maximum PPT techniques of PV systems. IEEE Energytech 29–31 (2012)

  19. Ehsani, M., Gao, Y., Longo, S., Ebrahimi, K.: Modern electric, hybrid electric, and fuel cell vehicles, 3rd edn. CRC Press, Boca Raton (2018)

    Google Scholar 

  20. Das, V., Padmanaban, S., Venkitusamy, K., Selvamuthukumaran, R., Blaabjerg, F., Siano, P.: Recent advances and challenges of fuel cell based power system architectures and control—a review. Renew. Sustain. Energy Rev. 73, 10–18 (2017)

    Article  Google Scholar 

  21. Hakala, T., Lahdeaho, T., Komsi, R.: LVDC pilot implementation in public distribution network. In: Proceeding of International Conference on Electrical Distribution, CIRED 2015 (2015)

  22. Park, J.D., Candelaria, J., Ma, L., Dunn, K.: DC ring-bus microgrid fault protection and identification of fault location. IEEE Trans. Power Delivery 28(4), 2574–2584 (2013)

    Article  Google Scholar 

  23. Choudhury, T.R., Nayak, B.: Comparative steady state analysis of boost and cascaded boost converter with inductive esr losses & capacitor current behaviour. Int. J. Power Electr. Drive Syst. (IJPEDS) 7(1), 159–172 (2016)

    Article  Google Scholar 

  24. Choudhury, T.R., Nayak, B.: Comparison and analysis of cascaded and quadratic boost converter. In: 2015 IEEE Power, Communication and Information Technology Conference (PCITC), pp. 78–83 (2015)

  25. Choudhury, T.R. et al.: A review and comparative study of Boost, Quadratic Boost, Interleaved and Boost with CLD cell converters. In: IEEE ICRIEECE 2018, KIIT, Deemed to be University, Bhubaneswar (Paper Presented) (2018)

  26. Morales-Saldaña, J.A., Carbajal-Gutiérrez, E., Leyva-Ramos, J.: Modeling of switch-mode DC–DC cascade converters. IEEE Trans. Aerospace Electr. Syst 38(1), 295–299 (2002)

    Article  Google Scholar 

  27. Lee, S., Do, H.: High step-up coupled-inductor cascade boost DC–DC converter with lossless passive snubber. IEEE Trans. Industr. Electron. 65(10), 7753–7761 (2018)

    Article  Google Scholar 

  28. Frances, A., Asensi, R., Garcia, O., Prieto, R., Uceda, J.: Modeling electronic power converters in smart DC microgrids—an overview. In: IEEE Transactions on Smart Grid (Early access) (2018). https://doi.org/10.1109/tsg.2017.2707345

  29. Matsuo, H., Harada, K.: The cascade connection of switching regulators. In: IEEE transactions on industry applications, IA-12, 2 (Mar/Apr 1976), 192–198 (1976)

  30. Walker, G.R., Sernia, P.C.: Cascaded DC–DC converter connection of photovoltaic modules. IEEE Trans. Power Electr. 19(4), 1130–1139 (2004)

    Article  Google Scholar 

  31. Yu, Y., Konstantinou, G., Townsend, C.D., Aguilera, R.P., Agelidis, V.G.: Delta-connected cascaded H-bridge multilevel converters for large-scale photovoltaic grid integration. IEEE Trans. Industr. Electron. 64(11), 8877–8886 (2017)

    Article  Google Scholar 

  32. Pang, T., Manjrekar, M.: An improved topology derivation method for battery-integrated DC/DC converters in distributed photovoltaic system. PCIM Asia 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, China, pp. 1–7 (2018)

  33. Nejad, M.L., Poorali, B., Adib, E., Birjandi, A.A.M.: New cascade boost converter with reduced losses. IET Power Electron. 6(6), 1213–1219 (2016)

    Article  Google Scholar 

  34. Morales-Saldana, J.A., Galarza-Quirino, R., Leyva-Ramos, J., Carbajal Gutierrez, E.E., Ortiz-Lopez, M.G.: Modeling and control of a cascaded boost converter with a single switch. IECON 2006–32nd annual conference on IEEE industrial electronics, pp. 591–596 (2006)

  35. Wei, Q., Wu, B., Xu, D., Zargari, N.R.: Model predictive control of capacitor voltage balancing for cascaded modular DC–DC converters. IEEE Trans. Power Electron. 32(1), 752–761 (2017)

    Article  Google Scholar 

  36. Pinto, J.H.D.G. et al.: Cascade DC–DC converter modeling developed to super capacitor energy management system. 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, pp. 1–6 (2017). https://doi.org/10.1109/cobep.2017.8257390

  37. Leyva-Ramos, J., Ortiz-Lopez, M.G., Diaz-Saldierna, L.H., Morales-Saldana, J.A.: Switching regulator using a quadratic boost converter for wide DC conversion ratios. IET Power Electron. 5(5), 605–613 (2009)

    Article  Google Scholar 

  38. Leyva-Ramos, J., Ortiz-Lopez, M.G., Diaz-Saldierna, L.H., Martinez-Cruz, M.: Switching regulator using a quadratic boost converter for wide DC conversion ratios. IET Power Electron. 1(1), 1–10 (2011)

    Article  Google Scholar 

  39. Yang, P., Xu, J., Zhou, G., Zhang, S.: A new quadratic boost converter with high voltage step-up ratio and reduced voltage stress. In: 2012 IEEE 7th International Power Electronics and Motion Control Conference—ECCE Asia June 2-5, 2012, Harbin, China, pp. 1164–68 (2012)

  40. Leyva-Ramos, J., Mota-Varona, R., Ortiz-Lopez, M.G., Diaz-Saldierna, L.H., Langarica-Cordoba, D.: Control strategy of a quadratic boost converter with voltage multiplier cell for high voltage gain. IEEE J. Emerg. Sel. Topics Power Electr. 5, 22 (2017). https://doi.org/10.1109/jestpe.2017.2749311

    Article  Google Scholar 

  41. Shiyu, Z., Jianping X., Ping, Y.: A single-switch high gain quadratic boost converter based on voltage-lift-technique. In: 2012 10th International Power & Energy Conference (IPEC), Ho Chi Minh City, Vietnam, pp. 71–75 (2012)

  42. Balci, S., Altin, N., Komurcugil, H.: Performance analysis of interleaved quadratic boost converter with coupled inductor for fuel cell applications. In: IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, pp. 3541–3546 (2016)

  43. Chan, C.Y.: Investigation of voltage-mode controller for cascade boost converter. IET Power Electron. 8(8), 2060–2068 (2014)

    Article  Google Scholar 

  44. Chincholkar, S.H., Chan, C.-Y.: Investigation of current-mode controlled cascade boost converter systems: dynamics and stability issues. IET Power Electron. 5(5), 911–920 (2016)

    Article  Google Scholar 

  45. Chincholkar, S.H., Jiang, W., Chan, C.Y.: An improved PWM-based sliding-mode controller for a DC–DC cascade boost converter. IEEE Transactions on Circuits and Systems II: Express Briefs (2017). https://doi.org/10.1109/tcsii.2017.2754292

  46. Ye, Y.-m., Cheng, K.W.E.: Quadratic boost converter with low buffer capacitor Stress. IET Power Electron. 5, 1162–1170 (2014)

    Article  Google Scholar 

  47. Chandra Mouli, G.R., Schijffelen, J., Bauer, P., Zeman, M.: Design and comparison of a 10 kW interleaved boost converter for PV application using Si and SiC devices. IEEE Journal of Emerging and Selected Topics in Power Electronics, https://doi.org/10.1109/jestpe.2016.2601165

  48. L. Balogh; R.Redl, “Power-factor correction with interleaved boost converters in continuous-inductor-current mode,” Proceedings Eighth Annual Applied Power Electronics Conference and Exposition, 1993, Pages: 168 – 174

  49. Tofoli, F.L., de Castro, D., Pereira, W.J., de Paula, D.: Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter. IET Power Electron. 10, 2044–2057 (2015)

    Article  Google Scholar 

  50. Nouri, T., Hosseini, S.H., Babaei, E., Ebrahimi, J.: Interleaved high step-up dc–dc converter based on three-winding high-frequency coupled inductor and voltage multiplier cell. IET Power Electron. 8(2), 175–189 (2015)

    Article  Google Scholar 

  51. Po-Wa, L., Lee, Y.S., Cheng, D.K.W., Xiu-Cheng, L.: Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE Trans. Ind. Electron. 47(4), 787–795 (2000)

    Article  Google Scholar 

  52. Lopez-Santos, O., Martinez-Salamero, L., Garcia, G., Valderrama-Blavi, H., Zambrano-Prada, D.A.: Steady-State Analysis of Inductor Conduction Modes in the Quadratic Boost Converter. IEEE Trans. Power Electron. 32(3), 2253–2264 (2017)

    Article  Google Scholar 

  53. Chen, S., Liang, T., Yang, L., Chen, J.: a cascaded high step-up dc–dc converter with single switch for microsource applications. IEEE Trans. Power Electron. 26(4), 1146–1153 (2011)

    Article  Google Scholar 

  54. H.-B. Shin, J.-G. Park, S.-K. Chung, H.-W. Lee and T.A. Lipo, “Generalised steady-state analysis of multiphase interleaved boost converter with coupled inductors,” IEE Proc.-Electr. Power Appl., Vol. 152, No. 3, May 2005, pp: 584 – 94

  55. Musbahu Muhammad, Matthew Armstrong, Mohammed A. Elgendy, “A Nonisolated Interleaved Boost Converter for High-Voltage Gain Applications,” IEEE Journal Of Emerging And Selected Topics In Power Electronics, Vol. 04, No. 2, June 2016, pp:352 – 62

  56. Tseng, K.-C., Cheng, C.-A., Chen, C.-T.: High Step-Up Interleaved Boost Converter for Distributed Generation Using Renewable and Alternative Power Sources. IEEE Journal Of Emerging And Selected Topics In Power Electronics 5(2), 713–722 (2017)

    Article  Google Scholar 

  57. Ahmad Alzahrani, Pourya Shamsi, and Mehdi Ferdowsi, “An Interleaved Non-isolated DC-DC Boost Converter with Diode-Capacitor Cells,” 6thICRERA, San Diego, CA, USA, Nov 5 -8, 2017, pp: 216 – 221

  58. Chen, Y.-T., Zong-Xing, L., Liang, R.-H.: Analysis and design of a novel high-step-up DC/DC converter with coupled inductors. IEEE Trans. Power Electron. 33(1), 425–436 (2018)

    Article  Google Scholar 

  59. Niraj Rana, Mukesh Kumar, Arnab Ghosh, Subrata Banerjee, “A Novel Interleaved Tri-state Boost Converter with Lower Ripple and Improved Dynamic Response,” IEEE Transactions On Industrial Electronics, https://doi.org/10.1109/tie.2017.2774775

  60. Bhanu Prashant Baddipadiga,Venkata Anand Kishore Prabhala, Mehdi Ferdowsi,, “A Family of High-Voltage-Gain DC-DC Converters Based on a Generalized Structure,” IEEE Transactions on Power Electronics, https://doi.org/10.1109/tpel.2017.2777451

  61. Roh, C.W., Han, S.H., Youn, M.J.: Dual coupled inductor fed isolated boost converter for low input voltage applications. Electron. Lett. 35(21), 1791–1792 (1999)

    Article  Google Scholar 

  62. Wai, R.J., Duan, R.Y.: High-efficiency dc/dc converter with high voltage gain. Proc. Inst. Elect. Eng. Elect. Power 152(4), 793–802 (2005)

    Article  Google Scholar 

  63. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F., Lehman, B.: Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143–9178 (2017)

    Article  Google Scholar 

  64. Wu, G., Ruan, X., Ye, Z.: Nonisolated high step-up DC–DC converters adopting switched-capacitor cell. IEEE Trans. Ind. Electr 62(1), 383–393 (2015)

    Article  Google Scholar 

  65. Li, W., He, X.: Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 1239–1250 (2011)

    Article  Google Scholar 

  66. Wai, R., Lin, C., Chu, C.: High step-up dc–dc converter for fuel cell generation system. In: Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., pp. 57–62 (2004)

  67. Wu, Q., Wang, Q., Xu, J., Li, H., Xiao, L.: A high-efficiency step-up current-fed push-pull quasi-resonant converter with fewer components for fuel cell application. IEEE Trans. Industr. Electron. 64(8), 6639–6648 (2017)

    Article  Google Scholar 

  68. Forouzesh, M., Yari, K., Baghramian, A., Hasanpour, S.: Single-switch high step-up converter based on coupled inductor and switched capacitor techniques with quasi-resonant operation. IET Power Electr. 10(2), 240–250 (2017)

    Article  Google Scholar 

  69. Wai, R., Lin, C.: High-efficiency, high-step-up dc–dc converter for fuel-cell generation system. IEE Proc Elect. Power Appl. 152(5), 1371–1378 (2005)

    Article  Google Scholar 

  70. Wu, T., Lai, Y., Hung, J., Chen, Y.: Boost converter with coupled inductors and buck–boost type of active clamp. IEEE Trans. Ind. Electron. 55(1), 154–162 (2008)

    Article  Google Scholar 

  71. Wu, T., Lai, Y., Hung, J., Chen, Y.: An improved boost converter with coupled inductors and buck–boost type of active clamp. Conf. Rec. IEEE IAS Annu. Meeting 1, 639–644 (2005)

    Google Scholar 

  72. Zhu, G., McDonald, B.A.: Modeling and analysis of coupled inductors in power converters. IEEE Trans. Power Electron. 26(5), 1355–1364 (2011)

    Article  Google Scholar 

  73. Silva, F.S.F., Freitas, A.A.A., Daher, S., et al.: ‘High gain DC–DC boost converter with a coupling inductor’, Proc. IEEE COBEP, 2009, pp. 486–492

  74. Zhao, Y., Li, W., Deng, Y., He, X.: High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications. IET Power Electron. 8(8), 851–859 (2011)

    Article  Google Scholar 

  75. Hsieh, Y.-P., Chen, J.-F.: A novel high step-up DC–DC converter for a microgrid system. IEEE Trans. Power Electron. 26(4), 1127–1136 (2011)

    Article  Google Scholar 

  76. Axelrod, B., Beck, Y., Berkovich, Y.: High step-up DC–DC converter based on the switched-coupled-inductor boost converter and diode-capacitor multiplier: steady state and dynamics. IET Power Electron. 8(8), 1420–1428 (2015)

    Article  Google Scholar 

  77. Khalilzadeh, M.: Non-isolated high step-up DC–DC converter based on coupled inductor with reduced voltage stress. IET Power Electron. 8(11), 2184–2194 (2015)

    Article  Google Scholar 

  78. Changchien, S.-K., Liang, T.-J., Chen, J.-F., Yang, L.-S.: Step-up DC–DC converter by coupled inductor and voltage-lift technique. IET Power Electron. 3(3), 369–378 (2010)

    Article  Google Scholar 

  79. Liu, H., Ji, Y., Wang, L., Wheeler, P.: A family of improved magnetically coupled impedance network boost DC–DC converters. IEEE Trans Power Electr. (2018). https://doi.org/10.1109/tpel.2017.2763153

    Article  Google Scholar 

  80. Hu, X., Li, L., Li, Y., Wu, G.: Input-parallel output-series DC–DC converter for non-isolated high step-up applications. Electr. Lett. 52(20), 1715–1717 (2016)

    Article  Google Scholar 

  81. Xuefeng, H., Wang, J., Li, L., Li, Y.: A three-winding Coupled-inductor DC–DC converter topology with high voltage gain and reduced switch stress. IEEE Trans. Power Electron. 33(2), 1453–1462 (2018)

    Article  Google Scholar 

  82. Muhammad, M., Armstrong, M., Elgendy, M.A.: Analysis and implementation of high-gain non-isolated DC–DC boost converter. IET Power Electron. 10(11), 1241–1249 (2017)

    Article  Google Scholar 

  83. Wu, G., Ruan, X., Ye, Z.: High step-up DC–DC converter based on switched capacitor and coupled inductor. IEEE Trans. Industr. Electron. (2018). https://doi.org/10.1109/tie.2017.2774773

    Article  Google Scholar 

  84. Chen, S.M., Lao, M.L., Hsieh, Y.H., Liang, T.J., Chen, K.H.: A novel switched-coupled-inductor DC–DC step-up converter and its derivatives. IEEE Trans. Ind. Appl. 51(1), 309–313 (2015)

    Article  Google Scholar 

  85. Liang, T.J., Tseng, K.C.: Analysis of integrated boost-flyback step-up converter. IEE Proc. Electr. Power Appl. 152(2), 217–225 (2005)

    Article  Google Scholar 

  86. Tseng, K.C., Liang, T.J.: Novel high-efficiency step-up converter. IEE Proc. Electr. Power Appl. 151(2), 182–190 (2004)

    Article  Google Scholar 

  87. Hsieh, Y.P., Chen, J.F., Liang, T.J., Yang, L.S.: Novel high step-up DC–DC converter with coupled-inductor and switched-capacitor techniques. IEEE Trans. Ind. Electr. 59(2), 998–1008 (2012)

    Article  Google Scholar 

  88. Choudhury, T.R., Dhara, S., Nayak, B., Santra, S.B.: Modelling of a high step up DC–DC converter based on boost-flyback-switched capacitor. In: IEEE Calcutta Conference (CALCON), pp. 248–52 (2017)

  89. Wai, R.J., Duan, R.Y.: High-efficiency dc/dc converter with highvoltage gain. Proc. Inst. Elect. Eng.-Elect. Power Appl 152(4), 793–802 (2005)

    Article  Google Scholar 

  90. Wai, R.J., Duan, R.Y.: High step-up converter with coupled-inductor. IEEE Trans. Power Electron. 20(5), 1025–1035 (2005)

    Article  Google Scholar 

  91. Wai, R.J., Liu, L.W., Duan, R.Y.: High-efficiency voltage-clamped dc-dc converter with reduced reverse-recovery current and switch-voltage stress. IEEE Trans. Ind. Electron. 53(1), 272–280 (2005)

    Google Scholar 

  92. Wu, G., Ruan, X., Ye, Z.: High step-up DC–DC converter based on switched capacitor and coupled inductor. IEEE Trans. Industr. Electron. 65(7), 5572–5579 (2018). https://doi.org/10.1109/TIE.2017.2774773

    Article  Google Scholar 

  93. Baek, J.W., Ryoo, M.H., Kim, T.J., Yoo, D.W., Kim, J.S.: Highboost converter using voltage multiplier. In: Proc. IEEE IECON, pp. 567–572 (2005)

  94. Bascope, G.V.T., Bascope, R.P.T., Oliveira, D.S., Jr., Vasconcelos, S.A., Antunes,F.L.M., Branco, C.G.C.: A high step-up DC–DC converter based on three-state switching cell. In: Proc. IEEE ISIE, pp. 998–1003 (2006)

  95. Nouri, T., Vosoughi, N., Hosseini, S.H., Babaei, E., Sabahi, M.: An interleaved high step-up converter with coupled inductor and built-in transformer voltage multiplier cell techniques. IEEE Trans. Industr. Electron. 66(3), 1894–1905 (2019)

    Article  Google Scholar 

  96. Araujo, S.V., Torrico-Bascope, R.P., Torrico-Bascope, G.V.: Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell. IEEE Trans. Ind. Electron. 57(6), 1987–1997 (2010)

    Article  Google Scholar 

  97. Chen, S.M., Liang, T.J., Yang, L.S., Chen, J.F.: A cascaded high step-up DC–DC converter with single switch for microsource applications. IEEE Trans. On Pow. Elect. 26(4), 1146–1153 (2011)

    Article  Google Scholar 

  98. Saadat, P., Abbaszadeh, K.: A single switch high step up DC-DC converter based on quadratic boost. IEEE Trans. Industr. Electron. 63(12), 7733–7742 (2016). https://doi.org/10.1109/TIE.2016.2590991

    Article  Google Scholar 

  99. Zhang, N., Sutanto, D., Kashem, M., Qiu, D.: High-voltage-gain quadratic boost converter with voltage multiplier. IET Power Electron. 8(12), 2511–2519 (2015)

    Article  Google Scholar 

  100. Xuefeng, H., Gong, C.: A high voltage gain DC–DC converter integrating coupled-inductor and diode-capacitor techniques. IEEE Trans. Power Electron. 29(2), 789–800 (2014)

    Article  Google Scholar 

  101. Riz, A, Fodor, D., Klug, O., Karaffy, Z.: Inner gas pressure measurement based life-span estimation of electrolytic capacitors. In: The 13th Power Electronics and Motion Control Conference, 2008. EPE-PEMC, pp. 2096–2101 (2008)

  102. Gasperi, M.L., Rockwell, A., Milwaukee, W.: Life prediction modelling of bus capacitors in AC variable frequency drives. IEEE Trans. Ind. Appl. 41(6), 1430–1435 (2005)

    Article  Google Scholar 

  103. Sankaran, V.A., Rees, F.L., Avant, C.S.: Electrolytic capacitor life testing and prediction. IEEE Ind. Appl. Conf. 2, 1058–1065 (1997)

    Google Scholar 

  104. Amaral, A., Cardoso, A.: A simple offline technique for evaluating the condition of aluminum-electrolytic-capacitors. IEEE Trans. Ind. Electron. 56(8), 3230–3237 (2009)

    Article  Google Scholar 

  105. Amaral, A., Cardoso, A.: Simple experimental techniques to characterize capacitors in a wide range of frequencies and temperatures. IEEE Trans. Instrum. Meas. 59(5), 1258–1267 (2010)

    Article  Google Scholar 

  106. Buiatti, G.M., Amaral, A.M.R., Cardoso, A.J.M.: ESR estimation method for DC–DC converters through simplified regression models. 2007 IEEE Industry Applications Conference, pp. 2289–2294 (2007)

  107. Leite, A., Teixeira, H., Marques Cardoso, A.J., Araujo, R.: A simple ESR identification methodology for electrolytic capacitors condition monitoring. In: Proceedings of the 20th Congress on Condition Monitoring and Diagnostic Engineering Management. pp. 75–84 (2007)

  108. Abdennadher, K., Venet, P., Rojat, G., Retif, J.-M., Rosset, C.: A realtime predictive-maintenance system of aluminum electrolytic capacitors used in uninterrupted power supplies. IEEE Trans. Ind. Appl. 46(4), 1644–1652 (2010)

    Article  Google Scholar 

  109. H.M. Pang; P.M.H. Bryan, “A life prediction scheme for electrolytic capacitors in power converters without current sensor”. The TwentyFifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010). February 2010. pp. 973-979

  110. Anderson, J.M., Cox, R.W., Noppakunkajorn, J.: An on-line fault diagnosis method for power electronic drives. 2011 IEEE Electric Ship Technologies Symposium. 10–13, pp. 492–497 (2011)

  111. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, E.H., Zheng, Q., Tung, C.C., Liu, H.H.: The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proc. R. Soc. Lond. 454A, 903–995 (1998)

    Article  MATH  Google Scholar 

  112. Wang, G. et al.: ESR estimation method for DC–DC converters based on improved EMD algorithm. Proc. Of the IEEE 2012 Prognostics and System Health Management Conf. (PHM-2012), Beijing, pp. 1–6

  113. Laadjal, K. et al.: On-line estimation of aluminum electrolytic-capacitor parameters using a modified prony’s method. 2017 IEEE Int. Symp. On Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp. 387–393

  114. Prasanth, S. et al.: Online equivalent series resistance estimation method for condition monitoring of DC-link capacitors. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1773–1780

  115. Agarwal, N., et al.: Quasi-online technique for health monitoring of capacitor in single phase solar inverter. IEEE Trans. Power Electr. 2, 22 (2018). https://doi.org/10.1109/tpel.2017.2736162

    Article  Google Scholar 

  116. Arya, A., et al.: Capacitor impedance estimation utilizing dclink voltage oscillations in single phase Inverter. IET Power Electron. 10(9), 1046–1053 (2017)

    Article  Google Scholar 

  117. Amaral, A.M.R., et al.: On-line fault detection of aluminium electrolytic capacitors, in step-down DC–DC converters, using input current and output voltage rippl. IET Power Electron. 5(3), 315–322 (2012)

    Article  Google Scholar 

  118. Ma, H., Mao, X., Zhang, N., Xu, D.: Parameter identification of power electronics circuits based on hybrid models. Proceedings of 2005 IEEE Power Electronics Specialists Conference, Recife, Brazil, pp. 2855–2860 (2005)

  119. Pu, X.S., et al.: Fault diagnosis of DC-link capacitors in three-phase AC/DC PWM converters by online estimation of equivalent series resistance. IEEE Trans Indus Electr. 60(9), 4118–4127 (2013)

    Article  Google Scholar 

  120. Farjah, E., Givi, H., Ghanbari, T.: Application of an efficient rogowski coil sensor for switch fault diagnosis and capacitor ESR monitoring in nonisolated single-switch DC–DC converters. IEEE Trans. Power Electron. 32(2), 1442–1456 (2017)

    Article  Google Scholar 

  121. Wu, Y., Du, X.: A VEN condition monitoring method of DC-link capacitors for power converters. IEEE Trans. Industr. Electron. 66(2), 1296–1306 (2019). https://doi.org/10.1109/TIE.2018.2835393

    Article  Google Scholar 

  122. Ali, M., Loo, K., Lai, Y.: Non-intrusive parameter estimation method for autotuned DC–DC converter based on quasi-impulse response. IET Power Electr. 11(12), 2019–2028 (2018). https://doi.org/10.1049/iet-pel.2018.5467

    Article  Google Scholar 

  123. Liu, H., Hu, H., Wu, H., Xing, Y., Batarseh, I.: Overview of high-step-up coupled-inductor boost converters. IEEE J. Emerg. Selected Topics Power Electron. 5, 22 (2016). https://doi.org/10.1109/jestpe.2016.2532930

    Article  Google Scholar 

  124. About the IEC, http://www.iec.ch/about/taken on 22.01.2018

  125. Systems evaluation group—low voltage direct current applications, Distribution and safety for use in developed and developing economies. http://www.iec.ch/dyn/www/f?p=103:186:10323410070868::::FSP_ORG_ID:11901. Accessed 22 Jan 2018

  126. About the IEEE standards association. http://standards.ieee.org/about/ieeesa.html. Accessed 24 Jan 2018

  127. IEEE standards association strategic plan. http://standards.ieee.org/about/strategy.html. Accessed 24 Jan 2018

  128. IEEE Std. 446-1995: IEEE recommended practice for emergency and standby power systems for industrial and commercial applications (1995)

  129. IEEE Std 946-2004 (Revision of IEEE Std 946-1992): IEEE recommended practice for the design of DC auxiliary power systems for generating systems, pp. 1–40 (2005)

  130. IEEE P2030.10—standard for DC microgrids for rural and remote electricity access applications

  131. IEEE Std 2030.1.1-2015: IEEE Standard Technical Specifications of a DC Quick Charger for Use with Electric Vehicles, pp 1–97 (2016)

  132. ETD 50: Guidelines for 48 V ELVDC Distribution System, http://www.bis.org.in/sf/etd/ETD50(11294)_27012017.pdf

  133. EMerge Alliance: public overview of the emerge, public overview of the emerge alliance occupied space standard Version 1.1

  134. EMerge alliance: public overview of the emerge alliance data/telecom center standard Version 1.0

  135. Hossain, M.Z., Rahim, N.A., Selvaraj, J.: Recent progress and development on power DC-DC converter topology, control, design and applications: a review. Renew. Sustain. Energy Rev. 81, 205–230 (2018)

    Article  Google Scholar 

  136. SriRevathi, B., Prabhakar, M.: Nonisolated high gain DC-DC converter topologies for PV applications—a comprehensive review. Renew. Sustain. Energy Rev. 66, 920–933 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Roy Choudhury.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, T.R., Nayak, B., De, A. et al. A comprehensive review and feasibility study of DC–DC converters for different PV applications: ESS, future residential purpose, EV charging. Energy Syst 11, 641–671 (2020). https://doi.org/10.1007/s12667-019-00331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-019-00331-5

Keywords

Navigation