Skip to main content

Advertisement

Log in

An overview on synthesis and design of microalgal biorefinery configurations by employing superstructure-based optimization approach

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

A large number of potential technological alternatives exist for the development of microalgal biorefinery to produce a variety of end-products from microalgal biomass and their residues. The design of the promising biorefinery configurations considering preliminary and uncertain nature of technologies is one of the major biorefinery challenges, and it must be addressed systematically. This article presents key issues, challenges and opportunities for the modeling and optimization of microalgae-based biorefinery configurations. It reviews the processing pathways/networks for producing biofuels and various platform chemicals from microalgae with an emphasis on the development of the systematic modeling framework. Superstructure-based modeling and optimization can be a useful tool to identify the optimal/promising biorefinery configurations. Key components of the superstructure-based modeling framework are described, along with a comprehensive review of the existing studies on the superstructure-based optimization of biofuels/bioenergy production from microalgae. This paper also identifies potential perspectives for future research focusing on the application of the superstructure-based approach for the systematic design of sustainable microalgal biorefineries. Perspectives on the future integrated biorefineries considering carbon mitigation as well as heat and power integration are presented. Issues on sustainability and uncertainties modeling in the biorefinery design phase are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(modified from [11, 23, 24])

Fig. 2
Fig. 3

(adapted from [11])

Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harun, R., Singh, M., Forde, G.M., Danquah, M.K.: Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14(3), 1037–1047 (2010)

    Google Scholar 

  2. Borowitzka, M.A.: High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 25(3), 743–756 (2013)

    Google Scholar 

  3. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294–306 (2007)

    Google Scholar 

  4. Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N.: Biofuels from microalgae. Biotechnol. Progr. 24(4), 815–820 (2008)

    Google Scholar 

  5. Gouveia, L.: Microalgae as a Feedstock for Biofuels. Springer, Heidelberg (2011)

    Google Scholar 

  6. Posten, C., Schaub, G.: Microalgae and terrestrial biomass as source for fuels—a process view. J. Biotechnol. 142(1), 64–69 (2009)

    Google Scholar 

  7. Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., Lim, J.K.: Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sustain. Energy Rev. 15(1), 584–593 (2011)

    Google Scholar 

  8. Suali, E., Sarbatly, R.: Conversion of microalgae to biofuel. Renew. Sustain. Energy Rev. 16(6), 4316–4342 (2012)

    Google Scholar 

  9. Singh, J., Gu, S.: Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 14(9), 2596–2610 (2010)

    Google Scholar 

  10. Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G., Simões, M.: Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 16(5), 3043–3053 (2012)

    Google Scholar 

  11. Rizwan, M.: Superstructure-based identification of optimal processing pathways for microalgae-based biorefinery. PhD Thesis, KAIST, South Korea (2015)

  12. Gong, J., You, F.: Global optimization for sustainable design and synthesis of algae processing network for CO2 mitigation and biofuel production using life cycle optimization. AlChE J. 60(9), 3195–3210 (2014)

    Google Scholar 

  13. Pham, V., El-Halwagi, M.: Process synthesis and optimization of biorefinery configurations. AlChE J. 58(4), 1212–1221 (2012)

    Google Scholar 

  14. Romero-García, J.M., Niño, L., Martínez-Patiño, C., Álvarez, C., Castro, E., Negro, M.J.: Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 159, 421–432 (2014)

    Google Scholar 

  15. Frombo, F., Minciardi, R., Robba, M., Rosso, F., Sacile, R.: A dynamic decision model for the optimal use of forest biomass for energy production. Energy Syst. 7(4), 615–635 (2016)

    Google Scholar 

  16. Nigam, P.S., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37(1), 52–68 (2011)

    Google Scholar 

  17. Collet, P., Spinelli, D., Lardon, L., Hélias, A., Steyer, J.-P., Bernard, O.: Chapter 13—life-cycle assessment of microalgal-based biofuels. In: Lee, D.-J., Chisti, Y., Soccol, C.R. (eds.) Biofuels from Algae, pp. 287–312. Elsevier, Amsterdam (2014)

    Google Scholar 

  18. Yen, H.-W., Hu, I.C., Chen, C.-Y., Ho, S.-H., Lee, D.-J., Chang, J.-S.: Microalgae-based biorefinery—from biofuels to natural products. Bioresour. Technol. 135, 166–174 (2013)

    Google Scholar 

  19. Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F.: Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl. Energy 103, 444–467 (2013)

    Google Scholar 

  20. Rizwan, M., Lee, J.H., Gani, R.: Optimal design of microalgae-based biorefinery: economics, opportunities and challenges. Appl. Energy 150, 69–79 (2015)

    Google Scholar 

  21. Rashid, N., Rehman, M.S.U., Han, J.-I.: Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem. Eng. J. 75, 101–107 (2013)

    Google Scholar 

  22. Fresewinkel, M., Rosello, R., Wilhelm, C., Kruse, O., Hankamer, B., Posten, C.: Integration in microalgal bioprocess development: design of efficient, sustainable, and economic processes. Eng. Life Sci. 14(6), 560–573 (2014)

    Google Scholar 

  23. Khan, S.A., Rashmi Hussain, M.Z., Prasad, S., Banerjee, U.C.: Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev. 13(9), 2361–2372 (2009)

    Google Scholar 

  24. Schneider, R.C.S., Bjerk, T.R., Gressler, P.D., Souza, M.P., Corbellini, V.A., Lobo, E.A.: Potential production of biofuel from microalgae biomass produced in wastewater. In: Fang, Z. (ed.) Biodiesel—Feedstock, Production and Applications, pp. 3–24. InTech, Croatia (2012)

    Google Scholar 

  25. Zhu, L.: Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew. Sustain. Energy Rev. 41, 1376–1384 (2015)

    Google Scholar 

  26. Barsanti, L., Gualtieri, P.: Is exploitation of microalgae economically and energetically sustainable? Algal Res. 31, 107–115 (2018)

    Google Scholar 

  27. Poddar, T., Jagannath, A., Almansoori, A.: Use of reactive distillation in biodiesel production: a simulation-based comparison of energy requirements and profitability indicators. Appl. Energy 185, 985–997 (2017)

    Google Scholar 

  28. Demirbas, A.: Competitive liquid biofuels from biomass. Appl. Energy 88(1), 17–28 (2011)

    Google Scholar 

  29. Morrison, G.M., Parker, N.C., Witcover, J., Fulton, L.M., Pei, Y.: Comparison of supply and demand constraints on US biofuel expansion. Energy Strateg. Rev. 5, 42–47 (2014)

    Google Scholar 

  30. Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R.: A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J. Clean. Prod. 181, 42–59 (2018)

    Google Scholar 

  31. Najafi, G., Ghobadian, B., Yusaf, T.F.: Algae as a sustainable energy source for biofuel production in Iran: a case study. Renew. Sustain. Energy Rev. 15(8), 3870–3876 (2011)

    Google Scholar 

  32. Rizwan, M., Lee, J.H., Gani, R.: Optimal processing pathway for the production of biodiesel from microalgal biomass: a superstructure based approach. Comput. Chem. Eng. 58, 305–314 (2013)

    Google Scholar 

  33. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C.: From glycerol to value-added products. Angew. Chem. Int. Ed. 46(24), 4434–4440 (2007)

    Google Scholar 

  34. Subhadra, B.G., Edwards, M.: Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Appl. Energy 88(10), 3515–3523 (2011)

    Google Scholar 

  35. Moon, C., Ahn, J.-H., Kim, S.W., Sang, B.-I., Um, Y.: Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl. Biochem. Biotechnol. 161(1), 502–510 (2010)

    Google Scholar 

  36. Mu, Y., Teng, H., Zhang, D.-J., Wang, W., Xiu, Z.-L.: Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28(21), 1755–1759 (2006)

    Google Scholar 

  37. Moncada, J., Jaramillo, J.J., Higuita, J.C., Younes, C., Cardona, C.A.: Production of bioethanol using Chlorella vulgaris cake: a technoeconomic and environmental assessment in the Colombian context. Ind. Eng. Chem. Res. 52(47), 16786–16794 (2013)

    Google Scholar 

  38. Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100(22), 5478–5484 (2009)

    Google Scholar 

  39. Amaro, H.M., Macedo, Â.C., Malcata, F.X.: Microalgae: an alternative as sustainable source of biofuels? Energy 44(1), 158–166 (2012)

    Google Scholar 

  40. Uggetti, E., Sialve, B., Trably, E., Steyer, J.-P.: Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioprod. Biorefin. 8(4), 516–529 (2014)

    Google Scholar 

  41. Miao, X., Wu, Q., Yang, C.: Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis 71(2), 855–863 (2004)

    Google Scholar 

  42. Miao, X., Wu, Q.: High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 110(1), 85–93 (2004)

    Google Scholar 

  43. Du, Z., Li, Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P., Ruan, R.: Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 102(7), 4890–4896 (2011)

    Google Scholar 

  44. Ghirardi, M.L., Zhang, L., Lee, J.W., Flynn, T., Seibert, M., Greenbaum, E., Melis, A.: Microalgae: a green source of renewable H2. Trends Biotechnol. 18(12), 506–511 (2000)

    Google Scholar 

  45. Rashid, N., Choi, W., Lee, K.: Optimization of two-staged bio-hydrogen production by immobilized Microcystis aeruginosa. Biomass Bioenergy 36, 241–249 (2012)

    Google Scholar 

  46. Ferreira, A.F., Ortigueira, J., Alves, L., Gouveia, L., Moura, P., Silva, C.M.: Energy requirement and CO2 emissions of bioH2 production from microalgal biomass. Biomass Bioenergy 49, 249–259 (2013)

    Google Scholar 

  47. Lv, P., Wu, C., Ma, L., Yuan, Z.: A study on the economic efficiency of hydrogen production from biomass residues in China. Renew. Energy 33(8), 1874–1879 (2008)

    Google Scholar 

  48. Yang, Z., Guo, R., Xu, X., Fan, X., Li, X.: Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int. J. Hydrog Energy 35(18), 9618–9623 (2010)

    Google Scholar 

  49. Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S.: Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew. Sustain. Energy Rev. 55, 909–941 (2016)

    Google Scholar 

  50. Trivedi, J., Aila, M., Bangwal, D.P., Kaul, S., Garg, M.O.: Algae based biorefinery—how to make sense? Renew. Sustain. Energy Rev. 47, 295–307 (2015)

    Google Scholar 

  51. Brennan, L., Owende, P.: Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14(2), 557–577 (2010)

    Google Scholar 

  52. Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C.W., Park, M.S., Yang, J.-W.: Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 31(6), 862–876 (2013)

    Google Scholar 

  53. Rizwan, M., Zaman, M., Lee, J.H., Gani, R.: Optimal processing pathway selection for microalgae-based biorefinery under uncertainty. Comput. Chem. Eng. 82, 362–373 (2015)

    Google Scholar 

  54. Brownbridge, G., Azadi, P., Smallbone, A., Bhave, A., Taylor, B., Kraft, M.: The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresour. Technol. 151, 166–173 (2014)

    Google Scholar 

  55. Liu, P., Pistikopoulos, E.N., Li, Z.: Energy systems engineering: methodologies and applications. Front. Energy Power Eng. China 4(2), 131–142 (2010)

    Google Scholar 

  56. Yue, D., You, F., Snyder, S.W.: Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput. Chem. Eng. 66, 36–56 (2014)

    Google Scholar 

  57. Yeomans, H., Grossmann, I.E.: A systematic modeling framework of superstructure optimization in process synthesis. Comput. Chem. Eng. 23(6), 709–731 (1999)

    Google Scholar 

  58. Grossmann, I.E.: Papers from the 25th CONICET international conference mixed-integer programming approach for the synthesis of integrated process flowsheets. Comput. Chem. Eng. 9(5), 463–482 (1985)

    MathSciNet  Google Scholar 

  59. Grossmann, I.E.: Mixed-integer optimization techniques for algorithmic process synthesis. In: John, L.A. (ed.) Advances in Chemical Engineering, vol. 23, pp. 171–246. Academic Press, London (1996)

    Google Scholar 

  60. Farkas, T., Rev, E., Lelkes, Z.: Process flowsheet superstructures: structural multiplicity and redundancy: Part II: Ideal and binarily minimal MINLP representations. Comput. Chem. Eng. 29(10), 2198–2214 (2005)

    Google Scholar 

  61. Quaglia, A., Sarup, B., Sin, G., Gani, R.: Integrated business and engineering framework for synthesis and design of enterprise-wide processing networks. Comput. Chem. Eng. 38, 213–223 (2012)

    Google Scholar 

  62. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)

    MathSciNet  MATH  Google Scholar 

  63. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    MathSciNet  MATH  Google Scholar 

  64. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    MathSciNet  MATH  Google Scholar 

  65. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1), 327–349 (1994)

    MathSciNet  MATH  Google Scholar 

  66. Edgar, T.F., Himmelblau, D.M., Lasdon, L.S.: Optimization of Chemical Processes. McGraw-Hill, New York (2001)

    Google Scholar 

  67. Grossmann, I.E.: Mixed-integer nonlinear programming techniques for the synthesis of engineering systems. Res. Eng. Des. 1(3), 205–228 (1990)

    Google Scholar 

  68. Yuan, Z., Chen, B., Gani, R.: Applications of process synthesis: moving from conventional chemical processes towards biorefinery processes. Comput. Chem. Eng. 49, 217–229 (2013)

    Google Scholar 

  69. Alvarado-Morales, M., Terra, J., Gernaey, K.V., Woodley, J.M., Gani, R.: Biorefining: computer aided tools for sustainable design and analysis of bioethanol production. Chem. Eng. Res. Des. 87(9), 1171–1183 (2009)

    Google Scholar 

  70. Bertran, M.-O., Frauzem, R., Sanchez-Arcilla, A.-S., Zhang, L., Woodley, J.M., Gani, R.: A generic methodology for processing route synthesis and design based on superstructure optimization. Comput. Chem. Eng. 106, 892–910 (2017)

    Google Scholar 

  71. Zondervan, E., Nawaz, M., de Haan, A.B., Woodley, J.M., Gani, R.: Optimal design of a multi-product biorefinery system. Comput. Chem. Eng. 35(9), 1752–1766 (2011)

    Google Scholar 

  72. Yuan, Z., Chen, B.: Process synthesis for addressing the sustainable energy systems and environmental issues. AlChE J. 58(11), 3370–3389 (2012)

    Google Scholar 

  73. Yılmaz, S., Selim, H.: A review on the methods for biomass to energy conversion systems design. Renew. Sustain. Energy Rev. 25, 420–430 (2013)

    Google Scholar 

  74. Daoutidis, P., Kelloway, A., Marvin, W.A., Rangarajan, S., Torres, A.I.: Process systems engineering for biorefineries: new research vistas. Curr. Opin. Chem. Eng. 2(4), 442–447 (2013)

    Google Scholar 

  75. Rizwan, M., Lee, J.H., Gani, R.: Superstructure optimization of biodiesel production from microalgal biomass. IFAC Proc. Vol. 46(32), 111–116 (2013)

    Google Scholar 

  76. Gong, J., You, F.: Optimal design and synthesis of algal biorefinery processes for biological carbon sequestration and utilization with zero direct greenhouse gas emissions: MINLP model and global optimization algorithm. Ind. Eng. Chem. Res. 53(4), 1563–1579 (2014)

    Google Scholar 

  77. Yu, N., Dieu, L.T.J., Harvey, S., Lee, D.-Y.: Optimization of process configuration and strain selection for microalgae-based biodiesel production. Bioresour. Technol. 193, 25–34 (2015)

    Google Scholar 

  78. Gupta, S.S., Shastri, Y., Bhartiya, S.: Model-based optimisation of biodiesel production from microalgae. Comput. Chem. Eng. 89, 222–249 (2016)

    Google Scholar 

  79. Gupta, S.S., Shastri, Y., Bhartiya, S.: Optimization of integrated microalgal biorefinery producing fuel and value-added products. Biofuels Bioprod. Biorefin. 11(6), 1030–1050 (2017)

    Google Scholar 

  80. Martín, M., Grossmann, I.E.: Simultaneous optimization and heat integration for biodiesel production from cooking oil and algae. Ind. Eng. Chem. Res. 51(23), 7998–8014 (2012)

    Google Scholar 

  81. Slegers, P.M., Koetzier, B.J., Fasaei, F., Wijffels, R.H., van Straten, G., van Boxtel, A.J.B.: A model-based combinatorial optimisation approach for energy-efficient processing of microalgae. Algal Res. 5, 140–157 (2014)

    Google Scholar 

  82. Gebreslassie, B.H., Waymire, R., You, F.: Sustainable design and synthesis of algae-based biorefinery for simultaneous hydrocarbon biofuel production and carbon sequestration. AlChE J. 59(5), 1599–1621 (2013)

    Google Scholar 

  83. Nodooshan, K.G., Moraga, R.J., Chen, S.-J.G., Nguyen, C., Wang, Z., Mohseni, S.: Environmental and economic optimization of algal biofuel supply chain with multiple technological pathways. Ind. Eng. Chem. Res. 57(20), 6910–6925 (2018)

    Google Scholar 

  84. García Prieto, C.V., Ramos, F.D., Estrada, V., Villar, M.A., Diaz, M.S.: Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB. Energy 139, 1159–1172 (2017)

    Google Scholar 

  85. IPCC: IPCC Special Report on Carbon Dioxide Capture and Storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (eds.)]. Cambridge University Press, New York (2005)

    Google Scholar 

  86. Thomson, D., Khare, A.: Carbon capture and storage (CCS) deployment—can Canada capitalize on experience? J. Technol. Manage. Innovation 3, 111–118 (2008)

    Google Scholar 

  87. Wennersten, R., Sun, Q., Li, H.: The future potential for Carbon Capture and Storage in climate change mitigation—an overview from perspectives of technology, economy and risk. J. Clean. Prod. 103, 724–736 (2015)

    Google Scholar 

  88. Singham, D.I., Cai, W., White, J.A.: Optimal carbon capture and storage contracts using historical CO2 emissions levels. Energy Syst. 6(3), 331–360 (2015)

    Google Scholar 

  89. DOE/NETL: DOE/NETL Carbon Dioxide Capture and Storage R&D Roadmap. US Department of Energy and National Energy Technology Laboratory (2010)

  90. Huang, Y., Rebennack, S., Zheng, Q.P.: Techno-economic analysis and optimization models for carbon capture and storage: a survey. Energy Syst. 4(4), 315–353 (2013)

    Google Scholar 

  91. Gutiérrez-Arriaga, C.G., Serna-González, M., Ponce-Ortega, J.M., El-Halwagi, M.M.: Sustainable integration of algal biodiesel production with steam electric power plants for greenhouse gas mitigation. ACS Sustain. Chem. Eng. 2(6), 1388–1403 (2014)

    Google Scholar 

  92. Olaizola, M.: Microalgal removal of CO2 from flue gases: changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol. Bioprocess Eng. 8(6), 360–367 (2003)

    Google Scholar 

  93. Ghorbani, A., Rahimpour, H.R., Ghasemi, Y., Zoughi, S., Rahimpour, M.R.: A review of carbon capture and sequestration in Iran: microalgal biofixation potential in Iran. Renew. Sustain. Energy Rev. 35, 73–100 (2014)

    Google Scholar 

  94. Zhao, B., Su, Y.: Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew. Sustain. Energy Rev. 31, 121–132 (2014)

    Google Scholar 

  95. de Queiroz Fernandes Araújo, O., de Luiz Medeiros, J., Yokoyama, L., do Rosário Vaz Morgado, C.: Metrics for sustainability analysis of post-combustion abatement of CO2 emissions: Microalgae mediated routes and CCS (carbon capture and storage). Energy 92(3), 556–568 (2015)

    Google Scholar 

  96. Baral, S.S., Singh, K., Sharma, P.: The potential of sustainable algal biofuel production using CO2 from thermal power plant in India. Renew. Sustain. Energy Rev. 49, 1061–1074 (2015)

    Google Scholar 

  97. Cheah, W.Y., Show, P.L., Chang, J.-S., Ling, T.C., Juan, J.C.: Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 184, 190–201 (2015)

    Google Scholar 

  98. Cuellar-Bermudez, S.P., Garcia-Perez, J.S., Rittmann, B.E., Parra-Saldivar, R.: Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 98, 53–65 (2015)

    Google Scholar 

  99. Zhao, B., Su, Y., Zhang, Y., Cui, G.: Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy 89, 347–357 (2015)

    Google Scholar 

  100. Gupta, S.S., Shastri, Y., Bhartiya, S.: Integrated microalgae biorefinery: impact of product demand profile and prospect of carbon capture. Biofuels Bioprod. Biorefin. 11(6), 1065–1076 (2017)

    Google Scholar 

  101. Rezvani, S., Moheimani, N.R., Bahri, P.A.: Techno-economic assessment of CO2 bio-fixation using microalgae in connection with three different state-of-the-art power plants. Comput. Chem. Eng. 84, 290–301 (2016)

    Google Scholar 

  102. Reen, C.S., Wayne, C.K., Loke, S.P., Jiun, Y.Y., Chyuan, O.H., Chuan, L.T., Jo-Shu, C.: Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review. Biotechnol. J. 13(6), 1700618 (2018)

    Google Scholar 

  103. Ng, R.T.L., Tay, D.H.S., Ng, D.K.S.: Simultaneous process synthesis, heat and power integration in a sustainable integrated biorefinery. Energy Fuels 26(12), 7316–7330 (2012)

    Google Scholar 

  104. Martín, M., Grossmann, I.E.: Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel. AlChE J. 59(8), 2872–2883 (2013)

    Google Scholar 

  105. Hariskos, I., Posten, C.: Biorefinery of microalgae—opportunities and constraints for different production scenarios. Biotechnol. J. 9(6), 739–752 (2014)

    Google Scholar 

  106. Azapagic, A.: Life cycle assessment and its application to process selection, design and optimisation. Chem. Eng. J. 73(1), 1–21 (1999)

    Google Scholar 

  107. Azapagic, A., Clift, R.: The application of life cycle assessment to process optimisation. Comput. Chem. Eng. 23(10), 1509–1526 (1999)

    Google Scholar 

  108. Zaimes, G.G., Khanna, V.: Chapter 8—life cycle sustainability aspects of microalgal biofuels. In: Klemes, J. (ed.) Assessing and Measuring Environmental Impact and Sustainability, pp. 255–276. Butterworth-Heinemann, Oxford (2015)

    Google Scholar 

  109. Singh, A., Olsen, S.I.: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88(10), 3548–3555 (2011)

    Google Scholar 

  110. Quinn, J.C., Davis, R.: The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour. Technol. 184, 444–452 (2015)

    Google Scholar 

  111. Thomassen, G., Van Dael, M., Lemmens, B., Van Passel, S.: A review of the sustainability of algal-based biorefineries: towards an integrated assessment framework. Renew. Sustain. Energy Rev. 68, 876–887 (2017)

    Google Scholar 

  112. Gong, J., You, F.: Value-added chemicals from microalgae: Greener, more economical, or both? ACS Sustain. Chem. Eng. 3(1), 82–96 (2015)

    Google Scholar 

  113. Rizwan, M., Lee, J.H., Gani, R.: Synthesis of optimal processing pathway for microalgae-based biorefinery under uncertainty. Comput. Aided Chem. Eng. 37, 2303–2308 (2015)

    Google Scholar 

  114. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming (Springer Series in Operation Research). Springer, New York (1999)

    Google Scholar 

  115. Dua, V., Pistikopoulos, E.N.: Optimization techniques for process synthesis and material design under uncertainty. Chem. Eng. Res. Des. 76(3), 408–416 (1998)

    Google Scholar 

  116. Grossmann, I.E.: Enterprise-wide optimization: a new frontier in process systems engineering. AlChE J. 51(7), 1846–1857 (2005)

    Google Scholar 

  117. Karuppiah, R., Grossmann, I.E.: Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Chem. Eng. 32(1–2), 145–160 (2008)

    Google Scholar 

  118. Kim, J., Realff, M.J., Lee, J.H.: Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Comput. Chem. Eng. 35(9), 1738–1751 (2011)

    Google Scholar 

  119. Gebreslassie, B.H., Yao, Y., You, F.: Design under uncertainty of hydrocarbon biorefinery supply chains: multiobjective stochastic programming models, decomposition algorithm, and a comparison between CVaR and downside risk. AlChE J. 58(7), 2155–2179 (2012)

    Google Scholar 

  120. Quaglia, A., Sarup, B., Sin, G., Gani, R.: A systematic framework for enterprise-wide optimization: synthesis and design of processing networks under uncertainty. Comput. Chem. Eng. 59, 47–62 (2013)

    Google Scholar 

  121. Tang, M.C., Chin, M.W.S., Lim, K.M., Mun, Y.S., Ng, R.T.L., Tay, D.H.S., Ng, D.K.S.: Systematic approach for conceptual design of an integrated biorefinery with uncertainties. Clean Technol. Environ. Policy 15(5), 783–799 (2013)

    Google Scholar 

  122. Cheali, P., Quaglia, A., Gernaey, K.V., Sin, G.: Effect of market price uncertainties on the design of optimal biorefinery systems—a systematic approach. Ind. Eng. Chem. Res. 53(14), 6021–6032 (2014)

    Google Scholar 

  123. Gong, J., You, F.: Optimal processing network design under uncertainty for producing fuels and value-added bioproducts from microalgae: two-stage adaptive robust mixed integer fractional programming model and computationally efficient solution algorithm. AlChE J. 63(2), 582–600 (2017)

    Google Scholar 

  124. Sy, C.L., Ubando, A.T., Aviso, K.B., Tan, R.R.: Multi-objective target oriented robust optimization for the design of an integrated biorefinery. J. Clean. Prod. 170, 496–509 (2018)

    Google Scholar 

  125. Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)

    MathSciNet  MATH  Google Scholar 

  126. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235(3), 471–483 (2014)

    MathSciNet  MATH  Google Scholar 

  127. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26(7), 1443–1471 (2002)

    Google Scholar 

  128. Eppen, G.D., Martin, R.K., Scharge, L.: OR practice—a scenario approach to capacity planning. Oper. Res. 37(4), 517–527 (1989)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the research office of the Petroleum Institute, Abu Dhabi for providing the financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Almansoori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizwan, M., Almansoori, A. & Elkamel, A. An overview on synthesis and design of microalgal biorefinery configurations by employing superstructure-based optimization approach. Energy Syst 10, 941–966 (2019). https://doi.org/10.1007/s12667-018-0296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-018-0296-6

Keywords

Navigation