Advertisement

Fast discrete s-transform and extreme learning machine based approach to islanding detection in grid-connected distributed generation

  • Manohar Mishra
  • Pravat Kumar Rout
Original Paper

Abstract

This paper presents an approach for islanding detection in distributed generation systems (DGs) using fast discrete s-transform (FDST) algorithm and bidirectional extreme learning machine (BELM) classifier. The system undertaken for this study comprises of two different kinds of DGs such as hydro turbine governor system and wind turbine generator. The analysis starts with extracting the non-stationary negative sequence voltage and current signals at DG end and then the instantaneous amplitude and frequency information are extracted through FDST algorithm. From this information, different distinguishing features are computed such as energy and standard deviation of amplitude to track the islanded event from different non-islanded events. The obtained features are examined through an extreme learning machine classifier to discriminate islanding and non-islanding events, under various operating conditions of distribution system. The accuracy of the proposed method is compared with other recently published techniques by various researchers to justify its improved performance for islanding detection.

Keywords

Distribution generation Extreme learning machine Islanding S-transform Wavelet transform Signal processing 

References

  1. 1.
    Kar, S.: A comprehensive protection scheme for micro-grid using fuzzy rule base approach. Energy Syst. 8(3), 449–464 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Eltawil, M.A., Zhao, Z.: Grid-connected photovoltaic power systems: technical and potential problems-A review. Renew. Sustain. Energy Rev. 14(1), 112–129 (2010)CrossRefGoogle Scholar
  3. 3.
    Assis, T.M.L., Taranto, G.N., Falcão, D.M., Ferreira, P.M.B., Pontes, C.E.V., Mendonça, L.P.: Pilot field test of intentional islanding in distribution network. Energy Syst. 6(4), 585–602 (2015)CrossRefGoogle Scholar
  4. 4.
    Fan, N., Izraelevitz, D., Pan, F., Pardalos, P.M., Wang, J.: A mixed integer programming approach for optimal power grid intentional islanding. Energy Syst. 3(1), 77–93 (2012)CrossRefGoogle Scholar
  5. 5.
    Golari, M., Fan, N., Wang, J.: Large-scale stochastic power grid islanding operations by line switching and controlled load shedding. Energy Syst. 8(3), 601–621 (2017)CrossRefGoogle Scholar
  6. 6.
    Conti, S.: Analysis of distribution network protection issues in presence of dispersed generation. Electr. Power Syst. Res. 79(1), 49–56 (2009)CrossRefGoogle Scholar
  7. 7.
    Ropp, M.E., Begovic, M., Rohatgi, A., Kern, G.A., Bonn, R.H., Gonzalez, S.: Determining the relative effectiveness of islanding detection methods using phase criteria and nondetection zones. IEEE Trans. Energy Convers. 15(3), 290–296 (2000)CrossRefGoogle Scholar
  8. 8.
    IEEE Standard 1547.4-2011. IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems With Electric Power Systems (2011).  https://doi.org/10.1109/IEEESTD.2011.5960751
  9. 9.
    Raza, S., Mokhlis, H., Arof, H., Laghari, J.A., Wang, L.: Application of signal processing techniques for islanding detection of distributed generation in distribution network: a review. Energy Convers. Manage. 96, 613–624 (2015)CrossRefGoogle Scholar
  10. 10.
    Laghari, J.A., Mokhlis, H., Karimi, M., Bakar, A.H.A., Mohamad, H.: Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: a review. Energy Convers. Manage. 88, 139–152 (2014)CrossRefGoogle Scholar
  11. 11.
    Ding, X., Crossley, P.A.: Islanding detection for distributed generation. In: Power Tech, 2005 IEEE Russia, pp. 1–4 (2005).  https://doi.org/10.1109/PTC.2005.4524688
  12. 12.
    Freitas, W., Xu, W., Affonso, C.M., Huang, Z.: Comparative analysis between ROCOF and vector surge relays for distributed generation applications. IEEE Trans. Power Deliv. 20(2), 1315–1324 (2005)CrossRefGoogle Scholar
  13. 13.
    Jia, K., Bi, T., Liu, B., Thomas, D., Goodman, A.: Advanced islanding detection utilized in distribution systems with DFIG. Int. J. Electr. Power Energy Syst. 63, 113–123 (2014)CrossRefGoogle Scholar
  14. 14.
    Zeineldin, H.H., Abdel-Galil, T., El-Saadany, E.F., Salama, M.M.A.: Islanding detection of grid connected distributed generators using TLS-ESPRIT. Electr. Power Syst. Res. 77(2), 155–162 (2007)CrossRefGoogle Scholar
  15. 15.
    O’kane, P., Fox, B.: Loss of mains detection for embedded generation by system impedance monitoring. In: Developments in Power System Protection, Sixth International Conference on (Conf. Publ. No. 434) IET, pp. 95–98 (1997).  https://doi.org/10.1049/cp:19970037
  16. 16.
    Yingram, M., Premrudeepreechacharn, S.: Over/undervoltage and undervoltage shift of hybrid islanding detection method of distributed generation. Sci. World J. (2015).  https://doi.org/10.1155/2015/654942
  17. 17.
    Pai, F.S., Huang, S.J.: A detection algorithm for islanding-prevention of dispersed consumer-owned storage and generating units. IEEE Trans. Energy Convers. 16(4), 346–351 (2001)CrossRefGoogle Scholar
  18. 18.
    Jang, S.I., Kim, K.H.: An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current. IEEE Trans. Power Deliv. 19(2), 745–752 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Salman, S.K., King, D.J., Weller, G.: New loss of mains detection algorithm for embedded generation using rate of change of voltage and changes in power factors. In: 2001 Seventh International Conference on Developments in Power System Protection (IEE), pp. 82–85, Amsterdam (2001).  https://doi.org/10.1049/cp:20010105
  20. 20.
    Kim, I.S.: Islanding detection technique using grid-harmonic parameters in the photovoltaic system. Energy Procedia. 14, 137–141 (2012)CrossRefGoogle Scholar
  21. 21.
    Kim, J.H., Kim, J.G., Ji, Y.H., Jung, Y.C., Won, C.Y.: An islanding detection method for a grid-connected system based on the goertzel algorithm. IEEE Trans. Power Electron. 26(4), 1049–1055 (2011)CrossRefGoogle Scholar
  22. 22.
    Fayyad, Y., Osman, A.: Neuro-wavelet based islanding detection technique. In: 2010 IEEE Electrical Power & Energy Conference, pp. 1–6, Halifax, NS (2010).  https://doi.org/10.1109/EPEC.2010.5697180
  23. 23.
    Mishra, M., Rout, P.K., Patel, S.: A novel islanding detection technique based on wavelet packet transform. In: 2015 IEEE Power, Communication and Information Technology Conference (PCITC), IEEE, pp. 697–702 (2015).  https://doi.org/10.1109/PCITC.2015.7438087
  24. 24.
    Ray, P.K., Mohanty, S.R., Kishor, N.: Disturbance detection in grid-connected distributed generation system using wavelet and S-transform. Electr. Power Syst. Res. 81(3), 805–819 (2011)CrossRefGoogle Scholar
  25. 25.
    Do, H.T., Zhang, X., Nguyen, N.V., Li, S.S., Chu, T.T.T.: Passive-islanding detection method using the wavelet packet transform in grid-connected photovoltaic systems. IEEE Trans. Power Electron. 31(10), 6955–6967 (2016)Google Scholar
  26. 26.
    Hashemi, F., Mohammadi, M.: Islanding detection approach with negligible non-detection zone based on feature extraction discrete wavelet transform and artificial neural network. Int. Trans. Electr. Energy Syst. 26(10), 2172–2192 (2016)CrossRefGoogle Scholar
  27. 27.
    Alshareef, S., Talwar, S., Morsi, W.G.: A new approach based on wavelet design and machine learning for islanding detection of distributed generation. IEEE Trans. Smart Grid. 5(4), 1575–1583 (2014)CrossRefGoogle Scholar
  28. 28.
    Ray, P.K., Kishor, N., Mohanty, S.R.: S-transform based islanding detection in grid-connected distributed generation based power system. In: Energy Conference and Exhibition (EnergyCon), IEEE. pp. 612–617 (2010).  https://doi.org/10.1109/ENERGYCON.2010.5771754
  29. 29.
    Mishra, M., Rout, P.K.: Time-frequency analysis based approach to islanding detection in micro-grid system. Int. Rev. Electr. Eng. (IREE). 11(1), 116–129 (2016)CrossRefGoogle Scholar
  30. 30.
    Mohanty, S.R., Kishor, N., Ray, P.K., Catalo, J.P.: Comparative study of advanced signal processing techniques for islanding detection in a hybrid distributed generation system. IEEE Trans. Sustain. Energy. 6(1), 122–131 (2015)CrossRefGoogle Scholar
  31. 31.
    Samantaray, S.R., Samui, A., Babu, B.C.: S-transform based cumulative sum detector (CUSUM) for islanding detection in Distributed Generations. In: power electronics, drives and energy systems (PEDES) & 2010 Power India, 2010 Joint International Conference on IEEE, pp. 1–6 (2010)Google Scholar
  32. 32.
    Mohanty, S.R., Kishor, N., Ray, P.K., Catalão, J.P.: Islanding detection in a distributed generation based hybrid system using intelligent pattern recognition techniques. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), pp. 1–5 (2012)Google Scholar
  33. 33.
    Niaki, A.M., Afsharnia, S.: A new passive islanding detection method and its performance evaluation for multi-DG systems. Electr. Power Syst. Res. 110, 180–187 (2014)CrossRefGoogle Scholar
  34. 34.
    Krishnanand, K.R., Dash, P.K.: A new real-time fast discrete S-transform for cross-differential protection of shunt-compensated power systems. IEEE Trans. Power Deliv. 28(1), 402–410 (2013)CrossRefGoogle Scholar
  35. 35.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing. 70(1), 489–501 (2006)CrossRefGoogle Scholar
  36. 36.
    Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cyber. Part B (Cybernetics) 42(2), 513–529 (2012)Google Scholar
  37. 37.
    Rao, C.R., Mitra, S.K.: Generalized inverse of matrices and its applications. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 601–620. Theory of Statistics, University of California Press, Berkeley, California (1972). https://projecteuclid.org/euclid.bsmsp/1200514113
  38. 38.
    Serre, D.: graduate texts in mathematics 216. Matrices: theory and applications (2002)Google Scholar
  39. 39.
    Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)CrossRefGoogle Scholar
  40. 40.
    Mishra, M., Sahani, M., Rout, P.K.: An islanding detection algorithm for distributed generation based on Hilbert-Huang transform and extreme learning machine. Sustain. Energy, Grids Netw. 9, 13–26 (2017)CrossRefGoogle Scholar
  41. 41.
    Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing. 71(16), 3460–3468 (2008)CrossRefGoogle Scholar
  42. 42.
    Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)CrossRefGoogle Scholar
  43. 43.
    Haung, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing. 70(16), 3056–3062 (2007)CrossRefGoogle Scholar
  44. 44.
    Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Networks 21(1), 158–162 (2010)CrossRefGoogle Scholar
  45. 45.
    Yang, Y., Wang, Y., Yuan, X.: bidirectional extreme learning machine for regression problem and its learning effectiveness. In: IEEE Transactions on Neural Networks and Learning Systems, vol. 23, pp. 1498–1505 (2012)Google Scholar
  46. 46.
    El-Arroudi, K., Joos, G., Kamwa, I., McGillis, D.T.: Intelligent-based approach to islanding detection in distributed generation. IEEE Trans Power Deliver. 22, 828–835 (2007)CrossRefGoogle Scholar
  47. 47.
    El-Nozahy, M.S., El-Saadany, E.F., Salama, M.M.A.: A robust wavelet ANN based technique for islanding detection. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–8. San Diego, CA (2011).  https://doi.org/10.1109/PES.2011.6039158
  48. 48.
    Moeini, A., Darabi, A., Rafiei, A.M.R., Karimi, M.: Intelligent islanding detection of a synchronous distributed generation using governor signal clustering. Electr. Power Syst. Res. 81, 608–616 (2011)CrossRefGoogle Scholar
  49. 49.
    Samantaray, S.R., Pujhari, T.M., Subudhi, B.D.: A new approach to islanding detection in distributed generations. In: Third IEEE International Conference on Power Systems, IIT, Kharagpur, India. (2009)Google Scholar
  50. 50.
    Lidula, N.W.A., Rajapakse, A.D.A.: Pattern recognition approach for detecting power islands using transient signals—Part I: design and implementation. IEEE Trans. Power Deliv. 25, 3070–3077 (2010)CrossRefGoogle Scholar
  51. 51.
    Azim, R., Zhu, Y., Saleem, H.A., Sun, K., Li, F., Sharma, R.: A decision tree based approach for microgrid islanding detection. In: 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, Washington, DC (2015).  https://doi.org/10.1109/ISGT.2015.7131809
  52. 52.
    De Mango, F., Liserre, M., Aquila, A.D.: Overview of anti-islanding algorithms for PV systems. Part II: activemethods. In: 2006 12th International Power Electronics and Motion Control Conference, pp. 1884–1889, Portoroz (2006).  https://doi.org/10.1109/EPEPEMC.2006.4778680

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringSiksha O Anusandhan UniversityBhubaneswarIndia

Personalised recommendations