Skip to main content

Advertisement

Log in

Fast discrete s-transform and extreme learning machine based approach to islanding detection in grid-connected distributed generation

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper presents an approach for islanding detection in distributed generation systems (DGs) using fast discrete s-transform (FDST) algorithm and bidirectional extreme learning machine (BELM) classifier. The system undertaken for this study comprises of two different kinds of DGs such as hydro turbine governor system and wind turbine generator. The analysis starts with extracting the non-stationary negative sequence voltage and current signals at DG end and then the instantaneous amplitude and frequency information are extracted through FDST algorithm. From this information, different distinguishing features are computed such as energy and standard deviation of amplitude to track the islanded event from different non-islanded events. The obtained features are examined through an extreme learning machine classifier to discriminate islanding and non-islanding events, under various operating conditions of distribution system. The accuracy of the proposed method is compared with other recently published techniques by various researchers to justify its improved performance for islanding detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kar, S.: A comprehensive protection scheme for micro-grid using fuzzy rule base approach. Energy Syst. 8(3), 449–464 (2017)

    Article  Google Scholar 

  2. Eltawil, M.A., Zhao, Z.: Grid-connected photovoltaic power systems: technical and potential problems-A review. Renew. Sustain. Energy Rev. 14(1), 112–129 (2010)

    Article  Google Scholar 

  3. Assis, T.M.L., Taranto, G.N., Falcão, D.M., Ferreira, P.M.B., Pontes, C.E.V., Mendonça, L.P.: Pilot field test of intentional islanding in distribution network. Energy Syst. 6(4), 585–602 (2015)

    Article  Google Scholar 

  4. Fan, N., Izraelevitz, D., Pan, F., Pardalos, P.M., Wang, J.: A mixed integer programming approach for optimal power grid intentional islanding. Energy Syst. 3(1), 77–93 (2012)

    Article  Google Scholar 

  5. Golari, M., Fan, N., Wang, J.: Large-scale stochastic power grid islanding operations by line switching and controlled load shedding. Energy Syst. 8(3), 601–621 (2017)

    Article  Google Scholar 

  6. Conti, S.: Analysis of distribution network protection issues in presence of dispersed generation. Electr. Power Syst. Res. 79(1), 49–56 (2009)

    Article  Google Scholar 

  7. Ropp, M.E., Begovic, M., Rohatgi, A., Kern, G.A., Bonn, R.H., Gonzalez, S.: Determining the relative effectiveness of islanding detection methods using phase criteria and nondetection zones. IEEE Trans. Energy Convers. 15(3), 290–296 (2000)

    Article  Google Scholar 

  8. IEEE Standard 1547.4-2011. IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems With Electric Power Systems (2011). https://doi.org/10.1109/IEEESTD.2011.5960751

  9. Raza, S., Mokhlis, H., Arof, H., Laghari, J.A., Wang, L.: Application of signal processing techniques for islanding detection of distributed generation in distribution network: a review. Energy Convers. Manage. 96, 613–624 (2015)

    Article  Google Scholar 

  10. Laghari, J.A., Mokhlis, H., Karimi, M., Bakar, A.H.A., Mohamad, H.: Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: a review. Energy Convers. Manage. 88, 139–152 (2014)

    Article  Google Scholar 

  11. Ding, X., Crossley, P.A.: Islanding detection for distributed generation. In: Power Tech, 2005 IEEE Russia, pp. 1–4 (2005). https://doi.org/10.1109/PTC.2005.4524688

  12. Freitas, W., Xu, W., Affonso, C.M., Huang, Z.: Comparative analysis between ROCOF and vector surge relays for distributed generation applications. IEEE Trans. Power Deliv. 20(2), 1315–1324 (2005)

    Article  Google Scholar 

  13. Jia, K., Bi, T., Liu, B., Thomas, D., Goodman, A.: Advanced islanding detection utilized in distribution systems with DFIG. Int. J. Electr. Power Energy Syst. 63, 113–123 (2014)

    Article  Google Scholar 

  14. Zeineldin, H.H., Abdel-Galil, T., El-Saadany, E.F., Salama, M.M.A.: Islanding detection of grid connected distributed generators using TLS-ESPRIT. Electr. Power Syst. Res. 77(2), 155–162 (2007)

    Article  Google Scholar 

  15. O’kane, P., Fox, B.: Loss of mains detection for embedded generation by system impedance monitoring. In: Developments in Power System Protection, Sixth International Conference on (Conf. Publ. No. 434) IET, pp. 95–98 (1997). https://doi.org/10.1049/cp:19970037

  16. Yingram, M., Premrudeepreechacharn, S.: Over/undervoltage and undervoltage shift of hybrid islanding detection method of distributed generation. Sci. World J. (2015). https://doi.org/10.1155/2015/654942

  17. Pai, F.S., Huang, S.J.: A detection algorithm for islanding-prevention of dispersed consumer-owned storage and generating units. IEEE Trans. Energy Convers. 16(4), 346–351 (2001)

    Article  Google Scholar 

  18. Jang, S.I., Kim, K.H.: An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current. IEEE Trans. Power Deliv. 19(2), 745–752 (2004)

    Article  MathSciNet  Google Scholar 

  19. Salman, S.K., King, D.J., Weller, G.: New loss of mains detection algorithm for embedded generation using rate of change of voltage and changes in power factors. In: 2001 Seventh International Conference on Developments in Power System Protection (IEE), pp. 82–85, Amsterdam (2001). https://doi.org/10.1049/cp:20010105

  20. Kim, I.S.: Islanding detection technique using grid-harmonic parameters in the photovoltaic system. Energy Procedia. 14, 137–141 (2012)

    Article  Google Scholar 

  21. Kim, J.H., Kim, J.G., Ji, Y.H., Jung, Y.C., Won, C.Y.: An islanding detection method for a grid-connected system based on the goertzel algorithm. IEEE Trans. Power Electron. 26(4), 1049–1055 (2011)

    Article  Google Scholar 

  22. Fayyad, Y., Osman, A.: Neuro-wavelet based islanding detection technique. In: 2010 IEEE Electrical Power & Energy Conference, pp. 1–6, Halifax, NS (2010). https://doi.org/10.1109/EPEC.2010.5697180

  23. Mishra, M., Rout, P.K., Patel, S.: A novel islanding detection technique based on wavelet packet transform. In: 2015 IEEE Power, Communication and Information Technology Conference (PCITC), IEEE, pp. 697–702 (2015). https://doi.org/10.1109/PCITC.2015.7438087

  24. Ray, P.K., Mohanty, S.R., Kishor, N.: Disturbance detection in grid-connected distributed generation system using wavelet and S-transform. Electr. Power Syst. Res. 81(3), 805–819 (2011)

    Article  Google Scholar 

  25. Do, H.T., Zhang, X., Nguyen, N.V., Li, S.S., Chu, T.T.T.: Passive-islanding detection method using the wavelet packet transform in grid-connected photovoltaic systems. IEEE Trans. Power Electron. 31(10), 6955–6967 (2016)

    Google Scholar 

  26. Hashemi, F., Mohammadi, M.: Islanding detection approach with negligible non-detection zone based on feature extraction discrete wavelet transform and artificial neural network. Int. Trans. Electr. Energy Syst. 26(10), 2172–2192 (2016)

    Article  Google Scholar 

  27. Alshareef, S., Talwar, S., Morsi, W.G.: A new approach based on wavelet design and machine learning for islanding detection of distributed generation. IEEE Trans. Smart Grid. 5(4), 1575–1583 (2014)

    Article  Google Scholar 

  28. Ray, P.K., Kishor, N., Mohanty, S.R.: S-transform based islanding detection in grid-connected distributed generation based power system. In: Energy Conference and Exhibition (EnergyCon), IEEE. pp. 612–617 (2010). https://doi.org/10.1109/ENERGYCON.2010.5771754

  29. Mishra, M., Rout, P.K.: Time-frequency analysis based approach to islanding detection in micro-grid system. Int. Rev. Electr. Eng. (IREE). 11(1), 116–129 (2016)

    Article  Google Scholar 

  30. Mohanty, S.R., Kishor, N., Ray, P.K., Catalo, J.P.: Comparative study of advanced signal processing techniques for islanding detection in a hybrid distributed generation system. IEEE Trans. Sustain. Energy. 6(1), 122–131 (2015)

    Article  Google Scholar 

  31. Samantaray, S.R., Samui, A., Babu, B.C.: S-transform based cumulative sum detector (CUSUM) for islanding detection in Distributed Generations. In: power electronics, drives and energy systems (PEDES) & 2010 Power India, 2010 Joint International Conference on IEEE, pp. 1–6 (2010)

  32. Mohanty, S.R., Kishor, N., Ray, P.K., Catalão, J.P.: Islanding detection in a distributed generation based hybrid system using intelligent pattern recognition techniques. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), pp. 1–5 (2012)

  33. Niaki, A.M., Afsharnia, S.: A new passive islanding detection method and its performance evaluation for multi-DG systems. Electr. Power Syst. Res. 110, 180–187 (2014)

    Article  Google Scholar 

  34. Krishnanand, K.R., Dash, P.K.: A new real-time fast discrete S-transform for cross-differential protection of shunt-compensated power systems. IEEE Trans. Power Deliv. 28(1), 402–410 (2013)

    Article  Google Scholar 

  35. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing. 70(1), 489–501 (2006)

    Article  Google Scholar 

  36. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cyber. Part B (Cybernetics) 42(2), 513–529 (2012)

  37. Rao, C.R., Mitra, S.K.: Generalized inverse of matrices and its applications. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 601–620. Theory of Statistics, University of California Press, Berkeley, California (1972). https://projecteuclid.org/euclid.bsmsp/1200514113

  38. Serre, D.: graduate texts in mathematics 216. Matrices: theory and applications (2002)

  39. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  40. Mishra, M., Sahani, M., Rout, P.K.: An islanding detection algorithm for distributed generation based on Hilbert-Huang transform and extreme learning machine. Sustain. Energy, Grids Netw. 9, 13–26 (2017)

    Article  Google Scholar 

  41. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing. 71(16), 3460–3468 (2008)

    Article  Google Scholar 

  42. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  43. Haung, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing. 70(16), 3056–3062 (2007)

    Article  Google Scholar 

  44. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Networks 21(1), 158–162 (2010)

    Article  Google Scholar 

  45. Yang, Y., Wang, Y., Yuan, X.: bidirectional extreme learning machine for regression problem and its learning effectiveness. In: IEEE Transactions on Neural Networks and Learning Systems, vol. 23, pp. 1498–1505 (2012)

  46. El-Arroudi, K., Joos, G., Kamwa, I., McGillis, D.T.: Intelligent-based approach to islanding detection in distributed generation. IEEE Trans Power Deliver. 22, 828–835 (2007)

    Article  Google Scholar 

  47. El-Nozahy, M.S., El-Saadany, E.F., Salama, M.M.A.: A robust wavelet ANN based technique for islanding detection. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–8. San Diego, CA (2011). https://doi.org/10.1109/PES.2011.6039158

  48. Moeini, A., Darabi, A., Rafiei, A.M.R., Karimi, M.: Intelligent islanding detection of a synchronous distributed generation using governor signal clustering. Electr. Power Syst. Res. 81, 608–616 (2011)

    Article  Google Scholar 

  49. Samantaray, S.R., Pujhari, T.M., Subudhi, B.D.: A new approach to islanding detection in distributed generations. In: Third IEEE International Conference on Power Systems, IIT, Kharagpur, India. (2009)

  50. Lidula, N.W.A., Rajapakse, A.D.A.: Pattern recognition approach for detecting power islands using transient signals—Part I: design and implementation. IEEE Trans. Power Deliv. 25, 3070–3077 (2010)

    Article  Google Scholar 

  51. Azim, R., Zhu, Y., Saleem, H.A., Sun, K., Li, F., Sharma, R.: A decision tree based approach for microgrid islanding detection. In: 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, Washington, DC (2015). https://doi.org/10.1109/ISGT.2015.7131809

  52. De Mango, F., Liserre, M., Aquila, A.D.: Overview of anti-islanding algorithms for PV systems. Part II: activemethods. In: 2006 12th International Power Electronics and Motion Control Conference, pp. 1884–1889, Portoroz (2006). https://doi.org/10.1109/EPEPEMC.2006.4778680

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manohar Mishra.

Appendix A

Appendix A

A.1 The parameter rating of studied model as shown in Fig. 2 for the proposed IDMs is listed below:

  1. 1.

    Grid data: 1000 MVA; 79 kV; 60 Hz.

  2. 2.

    Transformer data: (79/13) KV (Dyn1) for TR1, (13/13) KV (Dyn1) for TR2; (0.4/13) KV (Dyn1) for TR3; 10 MVA, R1 = R2 = 0.00375pu, 60 Hz; L1 = L2 = 0.1pu, Xm = 50pu.

  3. 3.

    Distribution generation:

    1. (a)

      DG1: HTG with “simplified synchronous machine”: 10 MVA, 13 kV, Inertia Const = 3.2 s, Internal resistance = 0.01466pu; Reactance = 0.22pu.

    2. (b)

      DG2: Wind Turbine with “asynchronous machine”: Rated MVA: 1.5; Rated KV: 0.4; Inertia Constant = 0.48pu; 60 Hz, Rs = 0.016pu, Rr = 0.015pu,Ls = 0.017pu; Lr = 0.156pu; Lm = 3.5pu.

  4. 4.

    Transmission line data: R0 = 0.0424 Ω/km, R1 = 0.0135 Ω/km, X0 = 1.39e-4 H/km, X1 = 4.9869e-5H/km, Co = 5.01e-9 F/km, C1 = 11.33e-9 F/km;

Distance: TL1:20 km; TL2:30 km; TL3:30 km.

A.2 The parameter rating of PV model represented as DG3 in Fig. 11.

1. Power rating

1 MW

2. Number of parallel and series cells, Np, Ns

100,33

3. Cell’s open circuit voltage, Voc

64.2 V

4. Cell’s Vmpp at STC

54.7 V

5. Cell’s short circuit current, Isc

5.96A

6. Cell’s Imp at STC

5.58 A

7. Charge of an electron, q

1.602 × 10−19C

8. Boltzmann’s constant, k

1.38x10−23J/K

9. Ideality factor, a

1.25

10. Cell’s reference temperature, Tref

300 K

11.Coefficient of cell, ki

0.0017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M., Rout, P.K. Fast discrete s-transform and extreme learning machine based approach to islanding detection in grid-connected distributed generation. Energy Syst 10, 757–789 (2019). https://doi.org/10.1007/s12667-018-0285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-018-0285-9

Keywords

Navigation