Advertisement

Constant power control of variable speed wind farm for primary frequency control support

  • Sadegh Ghani Varzaneh
  • Mehrdad Abedi
  • G. B. Gharehpetian
Original Paper
  • 32 Downloads

Abstract

The increasing penetration level of wind energy conversion systems (WECSs) into power systems imposes new requirements on the contribution of WECSs in the frequency control system. These requirements can be fulfilled by modifying the conventional control system of WECS. However, special attention should be paid to the frequency response of WECS, which should be high enough to contribute to frequency control, but should not lead to instability of WECS. Since a wind farm contains many turbines, determining the optimal response is very difficult. In this paper, by coordinating the WECSs of a variable speed wind farm, a pre-scheduled power can be tracked. Therefore, the fluctuation of the output power is mitigated; an optimal frequency response is achieved and the stability of WECSs is guaranteed. Simulation results show the capability of the proposed scheme to enable the wind farm tracks a pre-scheduled power and improves frequency control.

Keywords

Constant power control Wind farm Frequency control Deloading Droop control 

References

  1. 1.
    Shafiullah, G., Oo, A.M.T., Ali, AShawkat, Wolfs, P.: Potential challenges of integrating large-scale wind energy into the power grid—a review. Renew. Sustain. Energy Rev. 20, 306–321 (2013)CrossRefGoogle Scholar
  2. 2.
    Pradhan, C., Bhende, C.: Adaptive deloading of stand-alone wind farm for primary frequency control. Energy Syst. 6(1), 109–127 (2015)CrossRefGoogle Scholar
  3. 3.
    Wang, Y., Meng, J., Zhang, X., Xu, L.: Control of PMSG-based wind turbines for system inertial response and power oscillation damping. IEEE Trans. Sustain. Energy 6(2), 565–574 (2015)CrossRefGoogle Scholar
  4. 4.
    Wilches-Bernal, F., Chow, J.H., Sanchez-Gasca, J.J.: A fundamental study of applying wind turbines for power system frequency control. IEEE Trans. Power Syst. 31(2), 1496–1505 (2016)CrossRefGoogle Scholar
  5. 5.
    Dreidy, M., Mokhlis, H., Mekhilef, S.: Inertia response and frequency control techniques for renewable energy sources: a review. Renew. Sustain. Energy Rev. 69, 144–155 (2017)CrossRefGoogle Scholar
  6. 6.
    Machowski, J., Bialek, J., Bumby, J.: Power system dynamics: stability and control. Wiley, New York (2011)Google Scholar
  7. 7.
    Liu, Y., Gracia, J.R., King, T.J., Liu, Y.: Frequency regulation and oscillation damping contributions of variable-speed wind generators in the US eastern interconnection (EI). IEEE Trans. Sustain. Energy 6(3), 951–958 (2015)CrossRefGoogle Scholar
  8. 8.
    De Rijcke, S., Tielens, P., Rawn, B., Van Hertem, D., Driesen, J.: Trading energy yield for frequency regulation: optimal control of kinetic energy in wind farms. IEEE Trans. Power Syst. 5(30), 2469–2478 (2015)CrossRefGoogle Scholar
  9. 9.
    Vidyanandan, K., Senroy, N.: Primary frequency regulation by deloaded wind turbines using variable droop. IEEE Trans. Power Syst. 28(2), 837–846 (2013)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Lin, J., Wu, Q., Zhou, X.: Frequency control of DFIG based wind power penetrated power systems using switching angle controller and AGC. IEEE Trans. Power Syst. 32(2), 1553–1567 (2017)Google Scholar
  11. 11.
    Rose, S., Apt, J.: The cost of curtailing wind turbines for secondary frequency regulation capacity. Energy Syst. 5(3), 407–422 (2014)CrossRefGoogle Scholar
  12. 12.
    Hwang, M., Muljadi, E., Park, J.-W., Sorensen, P., Kang, Y.C.: Dynamic droop-based inertial control of a doubly-fed induction generator. IEEE Trans. Sustain. Energy 7(3), 924–933 (2016)CrossRefGoogle Scholar
  13. 13.
    Lee, J., Muljadi, E., Sorensen, P., Kang, Y.C.: Releasable kinetic energy-based inertial control of a DFIG wind power plant. IEEE Trans. Sustain. Energy 7(1), 279–288 (2016)CrossRefGoogle Scholar
  14. 14.
    Kayikci, M., Milanovic, J.V.: Dynamic contribution of DFIG-based wind plants to system frequency disturbances. IEEE Trans. Power Syst. 24(2), 859–867 (2009)CrossRefGoogle Scholar
  15. 15.
    Kang, M., Kim, K., Muljadi, E., Park, J.-W., Kang, Y.C.: Frequency control support of a doubly-fed induction generator based on the torque limit. IEEE Trans. Power Syst. 31(6), 4575–4583 (2016)CrossRefGoogle Scholar
  16. 16.
    Ye, H., Pei, W., Qi, Z.: Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems. IEEE Trans. Power Syst. 31(5), 3414–3423 (2016)CrossRefGoogle Scholar
  17. 17.
    Zhao, J., Lyu, X., Fu, Y., Hu, X., Li, F.: Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control. IEEE Trans. Energy Convers. 31(3), 833–845 (2016)CrossRefGoogle Scholar
  18. 18.
    Lin, J., Sun, Y., Song, Y., Gao, W., Sorensen, P.: Wind power fluctuation smoothing controller based on risk assessment of grid frequency deviation in an isolated system. IEEE Trans. Sustain. Energy 4(2), 379–392 (2013)CrossRefGoogle Scholar
  19. 19.
    Xu, J., Liao, S., Sun, Y., Ma, X.-Y., Gao, W., Li, X., Gu, J., Dong, J., Zhou, M.: An isolated industrial power system driven by wind-coal power for aluminum productions: a case study of frequency control. IEEE Trans. Power Syst. 30(1), 471–483 (2015)CrossRefGoogle Scholar
  20. 20.
    Ghani Varzaneh, S., Gharehpetian, G., Abedi, M.: Output power smoothing of variable speed wind farms using rotor-inertia. Electr. Power Syst. Res. 116, 208–217 (2014)CrossRefGoogle Scholar
  21. 21.
    Saejia, M., Ngamroo, I.: Alleviation of power fluctuation in interconnected power systems with wind farm by SMES with optimal coil size. IEEE Trans. Appl. Supercond. 22(3), 5701504–5701504 (2012)CrossRefGoogle Scholar
  22. 22.
    Howlader, A.M., Senjyu, T., Saber, A.Y.: An integrated power smoothing control for a grid-interactive wind farm considering wake effects. IEEE Syst. J. 9(3), 954–965 (2015)CrossRefGoogle Scholar
  23. 23.
    Crdenas, R., Pea, R., Alepuz, S., Asher, G.: Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. Industr. Electron. 60(7), 2776–2798 (2013)CrossRefGoogle Scholar
  24. 24.
    Ghoudelbourk, S., Dib, D., Omeiri, A.: Decoupled control of active and reactive power of a wind turbine based on DFIG and matrix converter. Energy Syst. 7(3), 483–497 (2015)CrossRefGoogle Scholar
  25. 25.
    Pena, R., Clare, J., Asher, G.: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc. Electr. Power Appl. 3, 231–241 (1996)CrossRefGoogle Scholar
  26. 26.
    Tapia, A., Tapia, G., Ostolaza, J.X., Saenz, J.R.: Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. Energy Convers. 18(2), 194–204 (2003)CrossRefGoogle Scholar
  27. 27.
    Ghani Varzaneh, S., Rastegar, H., Gharehpetian, G.: A new three-mode maximum power point tracking algorithm for doubly fed induction generator based wind energy conversion system. Electric Power Compon. Syst. 42(1), 45–59 (2014)CrossRefGoogle Scholar
  28. 28.
    Fouad, K., Boulouiha, H.M., Allali, A., Taibi, A., Denai, M.: Multivariable control of a grid-connected wind energy conversion system with power quality enhancement. Energy Syst. 9(1), 25–57 (2016)CrossRefGoogle Scholar
  29. 29.
    Tan, Y., Meegahaolla, L., Muttaqi, K.M.: A suboptimal power-point-tracking-based primary frequency response strategy for DFIGs in hybrid remote area power supply systems. IEEE Trans. Energy Convers. 31(1), 93–105 (2016)CrossRefGoogle Scholar
  30. 30.
    Van de Vyver, J., De Kooning, J.D., Meersman, B., Vandevelde, L., Vandoorn, T.L.: Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines. IEEE Trans. Power Syst. 31(2), 1129–1138 (2016)CrossRefGoogle Scholar
  31. 31.
    Wang, Y., Delille, G., Bayem, H., Guillaud, X., Francois, B.: High wind power penetration in isolated power systems assessment of wind inertial and primary frequency responses. IEEE Trans. Power Syst. 28(3), 2412–2420 (2013)CrossRefGoogle Scholar
  32. 32.
    Gao, Z., Geng, J., Zhang, K., Dai, Z., Bai, X., Peng, M., Wang, Y.: Wind power dispatch supporting technologies and its implementation. IEEE Trans. Smart Grid 4(3), 1684–1691 (2013)CrossRefGoogle Scholar
  33. 33.
    Keung, P.-K., Li, P., Banakar, H., Ooi, B.T.: Kinetic energy of wind-turbine generators for system frequency support. IEEE Trans. Power Syst. 24(1), 279–287 (2009)CrossRefGoogle Scholar
  34. 34.
    Ali, M., Ilie, I.-S., Milanovic, J.V., Chicco, G.: Wind farm model aggregation using probabilistic clustering. IEEE Trans. Power Syst. 28(1), 309–316 (2013)CrossRefGoogle Scholar
  35. 35.
    Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38060 (2009)Google Scholar
  36. 36.
    Almeida, P.R., Soares, F., Lopes, J.P.: Electric vehicles contribution for frequency control with inertial emulation. Electr. Power Syst. Res. 127, 141–150 (2015)CrossRefGoogle Scholar
  37. 37.
    Kundur, P.: Power system stability and control. Tata McGraw-Hill Education, Chennai (1994)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sadegh Ghani Varzaneh
    • 1
  • Mehrdad Abedi
    • 1
  • G. B. Gharehpetian
    • 1
  1. 1.Electrical Engineering DepartmentAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations